Finally, winglessness is a character which appears not to be inherited at all. Nevertheless our experience with rumplessness leads us to suspect that winglessness also is an impotently dominant character.
Looking at the matter frankly and without prejudice, the question must be answered: Has not the whole hypothesis of dominance become reductio ad absurdum? What visible criterion of dominance remains, where dominance fails completely? All the usual statistical landmarks of proportional appearance in successive generations being lost, can one properly speak of dominance and recessiveness at all?
Amid the general ruin of criteria, however, one means of detecting dominance remains. That extracted character which in F2 or subsequent generations shows in homologous[15] matings in some families a wide range of variability is dominant, while that extracted character which constantly, in all homologous matings, shows no or very little variation is recessive.
The reason for this difference in the inheritableness of the two conditions is easy to understand on the principles enumerated in the last section. A positive character has a real ontogeny. But, as we have seen, the development of any character may be interrupted at any stage. Most aberrations among organisms are due to a retardation or failure of normal development. In human affairs we recognize this tendency in the terms "degenerates" and "defectives" (constituting from 2 to 4 per cent of the population). Indeed, there are few persons who are not defective in some physical or psychical character. In cases where the commonest form of abnormality is due to a development in excess it seems probable that a normal restraining or inhibiting factor is defective or absent. On page 88 I tried to show how common in ontogeny such restraining and inhibiting factors are. Since ontogenetic processes are so often cut short by external conditions, we can understand the variability in the degree of development of positive characters.
On the other hand, whenever the fundamental hereditary stimulus or the material for a character is absent from the germ-plasm of both parents, then it can appear in none of the offspring; they will be practically invariable in respect to this condition. Only the ontogenetic fluctuations of other real characters may influence the defect. Consequently the absent state reproduces itself, the "recessive breeds true."
The considerations here presented bear upon the hypothesis of change of dominance. Bateson and Punnett (1905, p. 114) say of poultry: "The normal foot, though commonly recessive, may sometimes dominate the extra-toe character." This idea of occasional change in dominance has been expressed more than once in the literature. I think the phrase an unfortunate one. In my earlier report[16] I urged that a characteristic that is anywhere dominant is so without regard to race or species involved. If this is so it is clearly improbable that it should vary from individual to individual, or in the same individual at different times. Rather in view of the imperfection of dominance we should say that a dominant character sometimes fails to develop, in which case it is absent from the progeny; that is all. It is particularly apt to fail of development when dilute—heterozygous.
C. POTENCY.
Perhaps an apology is needed for introducing the much-abused word "potency"; but there is hardly another that can be so readily adapted to the precise definition I desire to give to it. The potency of a character may be defined as the capacity of its germinal determiner to complete its entire ontogeny. If we think of every character as being represented in the germ by a determiner, then we must recognize the fact that this determiner may sometimes develop fully, sometimes imperfectly, and sometimes not at all. When such a failure occurs in a normal strain a sport results.
Potency is variable. Even in a pure strain a determiner does not always develop fully, and this is an important cause of individual variability. But in a heterozygote potency is usually more or less reduced. When the reduction is slight dominance is nearly complete; but when the reduction is great dominance is more or less incomplete and, in the extreme case, may be absent altogether. The series of cases of varying perfection of dominance described in this work illustrate at the same time varying potency. The extreme case is that of the rumpless fowl. The character in this case is an inhibitor of tail development. This character has arisen among vertebrates repeatedly and has become perpetuated in some amphibia and primates, including man. In the case of our cock No. 117, the action of the inhibitor is very weak, so that in the heterozygote the development of the tail is not interfered with at all and even in extracted dominants it interferes little with tail development, so that it makes itself felt only in reduced size of the uropygium and in bent or shortened back. But in No. 116 the inhibiting determiner is strong. It develops fully in about 47 per cent of the heterozygotes and 2 extracted dominants may produce a family in all of which the tail's development is inhibited. In the case of the rumpless condition that arose apparently de novo in my yards, the new inhibitor showed an intermediate potency completely stopping the tail development in 1 out of 25 heterozygotes. These three cases afford a striking illustration of a variation in the potency of the same inhibiting character in different strains.
Not only is potency variable, but its variations seem, in some cases, to be inheritable. This we have seen to be the case with the Y-comb ([p. 15]); with the extra-toed condition of Houdans ([p. 23]); and with rumplessness (cf. offspring of No. 117 as compared with No. 116, [p. 40]). On the other hand, the extra-toed condition of Silkies, the grade of clean shank, and the degree of closure of nostril seem not to be inherited.