[9] M. d’Orbigny’s “Voyage,” Part. Géolog., p. 46. I have given a short account of the peculiar forms of the quartz hills of Tapalguen, so unusual in a metamorphic formation, in my “Journal of Researches” (2nd edit.), p. 116.

The Sierra Guitru-gueyu is situated sixty miles south of the S. Tapalguen: it consists of numerous parallel, sometimes blended together ridges, about twenty-three miles in width, and five hundred feet in height above the plain, and extending in a N.W. and S.E. direction. Skirting round the extreme S.E. termination, I ascended only a few points, which were composed of a fine-grained gneiss, almost composed of feldspar with a little mica, and passing in the upper parts of the hills into a rather compact purplish clay-slate. The cleavage was nearly vertical, striking in a N.W. by W. and S.E. by E. line, nearly, though not quite, coincident with the direction of the parallel ridges.

The Sierra Ventana lies close south of that of Guitru-gueyu; it is remarkable from attaining a height, very unusual on this side of the continent, of 3,340 feet. It consists up to its summit, of quartz, generally pure and white, but sometimes reddish, and divided into thick laminæ or strata: in one part there is a little glossy clay-slate with a tortuous cleavage. The thick layers of quartz strike in a W. 30° N. line, dipping southerly at an angle of 45° and upwards. The principal line of mountains, with some quite subordinate parallel ridges, range about W. 45° N.: but at their S.E. termination, only W. 25° N. This Sierra is said to extend between twenty and thirty leagues into the interior.

Patagonia.—With the exception perhaps of the hill of S. Antonio (600 feet high) in the Gulf of S. Matias, which has never been visited by a geologist, crystalline rocks are not met with on the coast of Patagonia for a space of 380 miles south of the S. Ventana. At this point (lat. 43° 50′), at Points Union and Tombo, plutonic rocks are said to appear, and are found, at rather wide intervals, beneath the Patagonian tertiary formation for a space of about three hundred miles southward, to near Bird Island, in latitude 48° 56′. Judging from specimens kindly collected for me by Mr. Stokes, the prevailing rock at Ports St. Elena, Camerones, Malaspina, and as far south as the Paps of Pineda, is a purplish-pink or brownish claystone porphyry, sometimes laminated, sometimes slightly vesicular, with crystals of opaque feldspar and with a few grains of quartz; hence these porphyries resemble those immediately to be described at Port Desire, and likewise a series which I have seen from P. Alegre on the southern confines of Brazil. This porphyritic formation further resembles in a singularly close manner the lowest stratified formation of the Cordillera of Chile, which, as we shall hereafter see, has a vast range, and attains a great thickness. At the bottom of the Gulf of St. George, only tertiary deposits appear to be present. At Cape Blanco, there is quartz rock, very like that of the Falkland Islands, and some hard, blue siliceous clay-slate.

At Port Desire there is an extensive formation of the claystone porphyry, stretching at least twenty-five miles into the interior: it has been denuded and deeply worn into gullies before being covered up by the tertiary deposits, through which it here and there projects in hills; those north of the bay being 440 feet in height. The strata have in several places been tilted at small angles, generally either to N.N.W. or S.S.E. By gradual passages and alternations, the porphyries change incessantly in nature. I will describe only some of the principal mineralogical changes, which are highly instructive, and which I carefully examined. The prevailing rock has a compact purplish base, with crystals of earthy or opaque feldspar, and often with grains of quartz. There are other varieties, with an almost truly trachytic base, full of little angular vesicles and crystals of glassy feldspar; and there are beds of black perfect pitchstone, as well as of a concretionary imperfect variety. On a casual inspection, the whole series would be thought to be of the same plutonic or volcanic nature with the trachytic varieties and pitchstone; but this is far from being the case, as much of the porphyry is certainly of metamorphic origin. Besides the true porphyries, there are many beds of earthy, quite white or yellowish, friable, easily fusible matter, resembling chalk, which under the microscope is seen to consist of minute broken crystals, and which, as remarked in a former chapter, singularly resembles the upper tufaceous beds of the Patagonian tertiary formation. This earthy substance often becomes coarser, and contains minute rounded fragments of porphyries and rounded grains of quartz, and in one case so many of the latter as to resemble a common sandstone. These beds are sometimes marked with true lines of aqueous deposition, separating particles of different degrees of coarseness; in other cases there are parallel ferruginous lines not of true deposition, as shown by the arrangement of the particles, though singularly resembling them. The more indurated varieties often include many small and some larger angular cavities, which appear due to the removal of earthy matter: some varieties contain mica. All these earthy and generally white stones insensibly pass into more indurated sonorous varieties, breaking with a conchoidal fracture, yet of small specific gravity; many of these latter varieties assume a pale purple tint, being singularly banded and veined with different shades, and often become plainly porphyritic with crystals of feldspar. The formation of these crystals could be most clearly traced by minute angular and often partially hollow patches of earthy matter, first assuming a fibrous structure, then passing into opaque imperfectly shaped crystals, and lastly, into perfect glassy crystals. When these crystals have appeared, and when the basis has become compact, the rock in many places could not be distinguished from a true claystone porphyry without a trace of mechanical structure.

In some parts, these earthy or tufaceous beds pass into jaspery and into beautifully mottled and banded porcelain rocks, which break into splinters, translucent at their edges, hard enough to scratch glass, and fusible into white transparent beads: grains of quartz included in the porcelainous varieties can be seen melting into the surrounding paste. In other parts, the earthy or tufaceous beds either insensibly pass into, or alternate with, breccias composed of large and small fragments of various purplish porphyries, with the matrix generally porphyritic: these breccias, though their subaqueous origin is in many places shown both by the arrangement of their smaller particles and by an oblique or current lamination, also pass into porphyries, in which every trace of mechanical origin and stratification has been obliterated.

Some highly porphyritic though coarse-grained masses, evidently of sedimentary origin, and divided into thin layers, differing from each other chiefly in the number of embedded grains of quartz, interested me much from the peculiar manner in which here and there some of the layers terminated in abrupt points, quite unlike those produced by a layer of sediment naturally thinning out, and apparently the result of a subsequent process of metamorphic aggregation. In another common variety of a finer texture, the aggregating process had gone further, for the whole mass consisted of quite short, parallel, often slightly curved layers or patches, of whitish or reddish finely granulo-crystalline feldspathic matter, generally terminating at both ends in blunt points; these layers or patches further tended to pass into wedge or almond-shaped little masses, and these finally into true crystals of feldspar, with their centres often slightly drusy. The series was so perfect that I could not doubt that these large crystals, which had their longer axes placed parallel to each other, had primarily originated in the metamorphosis and aggregation of alternating layers of tuff; and hence their parallel position must be attributed (unexpected though the conclusion may be), not to laws of chemical action, but to the original planes of deposition. I am tempted briefly to describe three other singular allied varieties of rock; the first without examination would have passed for a stratified porphyritic breccia, but all the included angular fragments consisted of a border of pinkish crystalline feldspathic matter, surrounding a dark translucent siliceous centre, in which grains of quartz not quite blended into the paste could be distinguished: this uniformity in the nature of the fragments shows that they are not of mechanical, but of concretionary origin, having resulted perhaps from the self-breaking up and aggregation of layers of indurated tuff containing numerous grains of quartz,—into which, indeed, the whole mass in one part passed. The second variety is a reddish non-porphyritic claystone, quite full of spherical cavities, about half an inch in diameter, each lined with a collapsed crust formed of crystals of quartz. The third variety also consists of a pale purple non-porphyritic claystone, almost wholly formed of concretionary balls, obscurely arranged in layers, of a less compact and paler coloured claystone; each ball being on one side partly hollow and lined with crystals of quartz.

Pseudo-dikes.—Some miles up the harbour, in a line of cliffs formed of slightly metamorphosed tufaceous and porphyritic claystone beds, I observed three vertical dikes, so closely resembling in general appearance ordinary volcanic dikes, that I did not doubt, until closely examining their composition, that they had been injected from below. The first is straight, with parallel sides, and about four feet wide; it consists of whitish, indurated tufaceous matter, precisely like some of the beds intersected by it. The second dike is more remarkable; it is slightly tortuous, about eighteen inches thick, and can be traced for a considerable distance along the beach; it is of a purplish-red or brown colour, and is formed chiefly of rounded grains of quartz, with broken crystals of earthy feldspar, scales of black mica, and minute fragments of claystone porphyry, all firmly united together in a hard sparing base. The structure of this dike shows obviously that it is of mechanical and sedimentary origin; yet it thinned out upwards, and did not cut through the uppermost strata in the cliffs. This fact at first appears to indicate that the matter could not have been washed in from above;[[10]] but if we reflect on the suction which would result from a deep-seated fissure being formed, we may admit that if the fissure were in any part open to the surface, mud and water might well be drawn into it along its whole course. The third dike consisted of a hard, rough, white rock, almost composed of broken crystals of glassy feldspar, with numerous scales of black mica, cemented in a scanty base; there was little in the appearance of this rock, to preclude the idea of its having been a true injected feldspathic dike. The matter composing these three pseudo-dikes, especially the second one, appears to have suffered, like the surrounding strata, a certain degree of metamorphic action; and this has much aided the deceptive appearance. At Bahia, in Brazil, we have seen that a true injected hornblendic dike, not only has suffered metamorphosis, but has been dislocated and even diffused in the surrounding gneiss, under the form of separate crystals and of fragments.

[10] Upfilled fissures are known to occur both in volcanic and in ordinary sedimentary formations. At the Galapagos Archipelago (“Volcanic Islands” etc.), there are some striking examples of pseudo-dikes composed of hard tuff.

Falkland Islands.—I have described these islands in a paper published in the third volume of the Geological Journal. The mountain-ridges consist of quartz, and the lower country of clay-slate and sandstone, the latter containing Palæozoic fossils. These fossils have been separately described by Messrs. Morris and Sharpe: some of them resemble Silurian, and others Devonian forms. In the eastern part of the group the several parallel ridges of quartz extend in a west and east line; but further westward the line becomes W.N.W. and E.S.E., and even still more northerly. The cleavage-planes of the clay-slate are highly inclined, generally at an angle of above 50°, and often vertical; they strike almost invariably in the same direction with the quartz ranges. The outline of the indented shores of the two main islands, and the relative positions of the smaller islets, accord with the strike both of the main axes of elevation and of the cleavage of the clay-slate.