Volcanic bomb of obsidian from Australia. The figure at left gives a front view; the figure at right a side view of the same object.

M. Bory St. Vincent[[4]] has described some balls of lava from the Isle of Bourbon, which have a closely similar structure. His explanation, however (if I understand it rightly), is very different from that which I have given; for he supposes that they have rolled, like snowballs, down the sides of the crater. M. Beudant,[[5]] also, has described some singular little balls of obsidian, never more than six or eight inches in diameter, which he found strewed on the surface of the ground: their form is always oval; sometimes they are much swollen in the middle, and even spindle-shaped: their surface is regularly marked with concentric ridges and furrows, all of which on the same ball are at right angles to one axis: their interior is compact and glassy. M. Beudant supposes that masses of lava, when soft, were shot into the air, with a rotatory movement round the same axis, and that the form and superficial ridges of the bombs were thus produced. Sir Thomas Mitchell has given me what at first appears to be the half of a much flattened oval ball of obsidian; it has a singular artificial-like appearance, which is well represented (of the natural size) in figure No. 4. It was found in its present state, on a great sandy plain between the rivers Darling and Murray, in Australia, and at the distance of several hundred miles from any known volcanic region. It seems to have been embedded in some reddish tufaceous matter; and may have been transported either by the aborigines or by natural means. The external saucer consists of compact obsidian, of a bottle-green colour, and is filled with finely cellular black lava, much less transparent and glassy than the obsidian. The external surface is marked with four or five not quite perfect ridges, which are represented rather too distinctly in figure No. 4. Here, then, we have the external structure described by M. Beudant, and the internal cellular condition of the bombs from Ascension. The lip of the saucer is slightly concave, exactly like the margin of a soup-plate, and its inner edge overlaps a little the central cellular lava. This structure is so symmetrical round the entire circumference, that one is forced to suppose that the bomb burst during its rotatory course, before being quite solidified, and that the lip and edges were thus slightly modified and turned inwards. It may be remarked that the superficial ridges are in planes, at right angles to an axis, transverse to the longer axis of the flattened oval: to explain this circumstance, we may suppose that when the bomb burst, the axis of rotation changed.

[4] “Voyage aux Quatre Isles d’Afrique” tome i, p. 222.

[5] “Voyage en Hongrie,” tome ii, p. 214.

Aeriform explosions.—The flanks of Green Mountain and the surrounding country are covered by a great mass, some hundred feet in thickness, of loose fragments. The lower beds generally consist of fine-grained, slightly consolidated tuffs,[[6]] and the upper beds of great loose fragments, with alternating finer beds.[[7]] One white ribbon-like layer of decomposed, pumiceous breccia, was curiously bent into deep unbroken curves, beneath each of the large fragments in the superincumbent stratum. From the relative position of these beds, I presume that a narrow-mouthed crater, standing nearly in the position of Green Mountain, like a great air-gun, shot forth, before its final extinction, this vast accumulation of loose matter. Subsequently to this event, considerable dislocations have taken place, and an oval circus has been formed by subsidence. This sunken space lies at the north-eastern foot of Green Mountain, and is well represented in Map 2. Its longer axis, which is connected with a N.E. and S.W. line of fissure, is three-fifths of a nautical mile in length; its sides are nearly perpendicular, except in one spot, and about four hundred feet in height; they consist, in the lower part, of a pale basalt with feldspar, and in the upper part, of the tuff and loose ejected fragments; the bottom is smooth and level, and under almost any other climate a deep lake would have been formed here. From the thickness of the bed of loose fragments, with which the surrounding country is covered, the amount of aeriform matter necessary for their projection must have been enormous; hence we may suppose it probable that after the explosions vast subterranean caverns were left, and that the falling in of the roof of one of these produced the hollow here described. At the Galapagos Archipelago, pits of a similar character, but of a much smaller size, frequently occur at the bases of small cones of eruption.

[6] Some of this peperino, or tuff, is sufficiently hard not to be broken by the greatest force of the fingers.

[7] On the northern side of the Green Mountain a thin seam, about an inch in thickness, of compact oxide of iron, extends over a considerable area; it lies conformably in the lower part of the stratified mass of ashes and fragments. This substance is of a reddish-brown colour, with an almost metallic lustre; it is not magnetic, but becomes so after having been heated under the blowpipe, by which it is blackened and partly fused. This seam of compact stone, by intercepting the little rain-water which falls on the island, gives rise to a small dripping spring, first discovered by Dampier. It is the only fresh water on the island, so that the possibility of its being inhabited has entirely depended on the occurrence of this ferruginous layer.

Ejected granitic fragments.—In the neighbourhood of Green Mountain, fragments of extraneous rock are not unfrequently found embedded in the midst of masses of scoriæ. Lieutenant Evans, to whose kindness I am indebted for much information, gave me several specimens, and I found others myself. They nearly all have a granitic structure, are brittle, harsh to the touch, and apparently of altered colours. First, a white syenite, streaked and mottled with red; it consists of well-crystallised feldspar, numerous grains of quartz, and brilliant, though small, crystals of hornblende. The feldspar and hornblende in this and the succeeding cases have been determined by the reflecting goniometer, and the quartz by its action under the blowpipe. The feldspar in these ejected fragments, like the glassy kind in the trachyte, is from its cleavage a potash-feldspar. Secondly, a brick-red mass of feldspar, quartz, and small dark patches of a decayed mineral; one minute particle of which I was able to ascertain, by its cleavage, to be hornblende. Thirdly, a mass of confusedly crystallised white feldspar, with little nests of a dark-coloured mineral, often carious, externally rounded, having a glossy fracture, but no distinct cleavage: from comparison with the second specimen, I have no doubt that it is fused hornblende. Fourthly, a rock, which at first appears a simple aggregation of distinct and large-sized crystals of dusty-coloured Labrador feldspar;[[8]] but in their interstices there is some white granular feldspar, abundant scales of mica, a little altered hornblende, and, as I believe, no quartz. I have described these fragments in detail, because it is rare[[9]] to find granitic rocks ejected from volcanoes with their minerals unchanged, as is the case with the first specimen, and partially with the second. One other large fragment, found in another spot, is deserving of notice; it is a conglomerate, containing small fragments of granitic, cellular, and jaspery rocks, and of hornstone porphyries, embedded in a base of wacke, threaded by numerous thin layers of a concretionary pitchstone passing into obsidian. These layers are parallel, slightly tortuous, and short; they thin out at their ends, and resemble in form the layers of quartz in gneiss. It is probable that these small embedded fragments were not separately ejected, but were entangled in a fluid volcanic rock, allied to obsidian; and we shall presently see that several varieties of this latter series of rock assume a laminated structure.

[8] Professor Miller has been so kind as to examine this mineral. He obtained two good cleavages of 86° 30′ and 86° 50′. The mean of several, which I made, was 86° 30′. Professor Miller states that these crystals, when reduced to a fine powder, are soluble in hydrochloric acid, leaving some undissolved silex behind; the addition of oxalate of ammonia gives a copious precipitate of lime. He further remarks, that according to Von Kobell, anorthite (a mineral occurring in the ejected fragments at Mount Somma) is always white and transparent, so that if this be the case, these crystals from Ascension must be considered as Labrador feldspar. Professor Miller adds, that he has seen an account, in Erdmann’s “Journal für tecnische Chemie,” of a mineral ejected from a volcano which had the external characters of Labrador feldspar, but differed in the analysis from that given by mineralogists of this mineral: the author attributed this difference to an error in the analysis of Labrador feldspar, which is very old.