[2] In a mass of molten iron, it is found (Edinburgh New Philosophical Journal, vol. xxiv, p. 66) that the substances, which have a closer affinity for oxygen than iron has, rise from the interior of the mass to the surface. But a similar cause can hardly apply to the separation of the crystals of these lava-streams. The cooling of the surface of lava seems, in some cases, to have affected its composition; for Dufrenoy (“Mém. pour servir,” tome iv, p. 271) found that the interior parts of a stream near Naples contained two-thirds of a mineral which was acted on by acids, whilst the surface consisted chiefly of a mineral unattackable by acids.

[3] I have taken the specific gravities of the simple minerals from Von Kobell, one of the latest and best authorities, and of the rocks from various authorities. Obsidian, according to Phillips, is 2·35; and Jameson says it never exceeds 2·4; but a specimen from Ascension, weighed by myself, was 2·42.

The sinking of crystals through a viscid substance like molten rock, as is unequivocally shown to have been the case in the experiments of M. Drée, is worthy of further consideration, as throwing light on the separation of the trachytic and basaltic series of lavas. Mr. P. Scrope has speculated on this subject; but he does not seem to have been aware of any positive facts, such as those above given; and he has overlooked one very necessary element, as it appears to me, in the phenomenon—namely, the existence of either the lighter or heavier mineral in globules or in crystals. In a substance of imperfect fluidity, like molten rock, it is hardly credible, that the separate, infinitely small atoms, whether of feldspar, augite, or of any other mineral, would have power from their slightly different gravities to overcome the friction caused by their movement; but if the atoms of any one of these minerals became, whilst the others remained fluid, united into crystals or granules, it is easy to perceive that from the lessened friction, their sinking or floating power would be greatly increased. On the other hand, if all the minerals became granulated at the same time, it is scarcely possible, from their mutual resistance, that any separation could take place. A valuable, practical discovery, illustrating the effect of the granulation of one element in a fluid mass, in aiding its separation, has lately been made: when lead containing a small proportion of silver, is constantly stirred whilst cooling, it becomes granulated, and the grains of imperfect crystals of nearly pure lead sink to the bottom, leaving a residue of melted metal much richer in silver; whereas if the mixture be left undisturbed, although kept fluid for a length of time, the two metals show no signs of separating.[[4]] The sole use of the stirring seems to be, the formation of detached granules. The specific gravity of silver is 10·4, and of lead 11·35: the granulated lead, which sinks, is never absolutely pure, and the residual fluid metal contains, when richest, only 1/119 part of silver. As the difference in specific gravity, caused by the different proportions of the two metals, is so exceedingly small, the separation is probably aided in a great degree by the difference in gravity between the lead, when granular though still hot, and when fluid.

[4] A full and interesting account of this discovery, by Mr. Pattinson, was read before the British Association in September 1838. In some alloys, according to Turner (“Chemistry,” p. 210), the heaviest metal sinks, and it appears that this takes place whilst both metals are fluid. Where there is a considerable difference in gravity, as between iron and the slag formed during the fusion of the ore, we need not be surprised at the atoms separating, without either substance being granulated.

In a body of liquified volcanic rock, left for some time without any violent disturbance, we might expect, in accordance with the above facts, that if one of the constituent minerals became aggregated into crystals or granules, or had been enveloped in this state from some previously existing mass, such crystals or granules would rise or sink, according to their specific gravity. Now we have plain evidence of crystals being embedded in many lavas, whilst the paste or basis has continued fluid. I need only refer, as instances, to the several, great, pseudo-porphyritic streams at the Galapagos Islands, and to the trachytic streams in many parts of the world, in which we find crystals of feldspar bent and broken by the movement of the surrounding, semi-fluid matter. Lavas are chiefly composed of three varieties of feldspar, varying in specific gravity from 2·4 to 2·74; of hornblende and augite, varying from 3·0 to 3·4; of olivine, varying from 3·3 to 3·4; and lastly, of oxides of iron, with specific gravities from 4·8 to 5·2. Hence crystals of feldspar, enveloped in a mass of liquified, but not highly vesicular lava, would tend to rise to the upper parts; and crystals or granules of the other minerals, thus enveloped, would tend to sink. We ought not, however, to expect any perfect degree of separation in such viscid materials. Trachyte, which consists chiefly of feldspar, with some hornblende and oxide of iron, has a specific gravity of about 2·45;[[5]] whilst basalt, composed chiefly of augite and feldspar, often with much iron and olivine, has a gravity of about 3·0. Accordingly we find, that where both trachytic and basaltic streams have proceeded from the same orifice, the trachytic streams have generally been first erupted owing, as we must suppose, to the molten lava of this series having accumulated in the upper parts of the volcanic focus. This order of eruption has been observed by Beudant, Scrope, and by other authors; three instances, also, have been given in this volume. As the later eruptions, however, from most volcanic mountains, burst through their basal parts, owing to the increased height and weight of the internal column of molten rock, we see why, in most cases, only the lower flanks of the central, trachytic masses, are enveloped by basaltic streams. The separation of the ingredients of a mass of lava, would, perhaps, sometimes take place within the body of a volcanic mountain, if lofty and of great dimensions, instead of within the underground focus; in which case, trachytic streams might be poured forth, almost contemporaneously, or at short recurrent intervals, from its summit, and basaltic streams from its base: this seems to have taken place at Teneriffe.[[6]] I need only further remark, that from violent disturbances the separation of the two series, even under otherwise favourable conditions, would naturally often be prevented, and likewise their usual order of eruption be inverted. From the high degree of fluidity of most basaltic lavas, these perhaps, alone, would in many cases reach the surface.

[5] Trachyte from Java was found by Von Buch to be 2·47; from Auvergne, by De la Beche, it was 2·42; from Ascension, by myself, it was 2·42. Jameson and other authors give to basalt a specific gravity of 3·0; but specimens from Auvergne were found, by De la Beche, to be only 2·78; and from the Giant’s Causeway, to be 2·91.

[6] Consult Von Buch’s well-known and admirable “Description Physique” of this island, which might serve as a model of descriptive geology.

As we have seen that crystals of feldspar, in the instance described by Von Buch, sink in obsidian, in accordance with their known greater specific gravity, we might expect to find in every trachytic district, where obsidian has flowed as lava, that it had proceeded from the upper or highest orifices. This, according to Von Buch, holds good in a remarkable manner both at the Lipari Islands and on the Peak of Teneriffe; at this latter place obsidian has never flowed from a less height than 9,200 feet. Obsidian, also, appears to have been erupted from the loftiest peaks of the Peruvian Cordillera. I will only further observe, that the specific gravity of quartz varies from 2·6 to 2·8; and therefore, that when present in a volcanic focus, it would not tend to sink with the basaltic bases; and this, perhaps, explains the frequent presence, and the abundance of this mineral, in the lavas of the trachytic series, as observed in previous parts of this volume.

An objection to the foregoing theory will, perhaps, be drawn from the plutonic rocks not being separated into two evidently distinct series, of different specific gravities; although, like the volcanic, they have been liquified. In answer, it may first be remarked, that we have no evidence of the atoms of any one of the constituent minerals in the plutonic series having been aggregated, whilst the others remained fluid, which we have endeavoured to show is an almost necessary condition of their separation; on the contrary, the crystals have generally impressed each other with their forms.[[7]]

[7] The crystalline paste of phonolite is frequently penetrated by long needles of hornblende; from which it appears that the hornblende, though the more fusible mineral, has crystallised before, or at the same time with a more refractory substance. Phonolite, as far as my observations serve, in every instance appears to be an injected rock, like those of the plutonic series; hence probably, like these latter, it has generally been cooled without repeated and violent disturbances. Those geologists who have doubted whether granite could have been formed by igneous liquefaction, because minerals of different degrees of fusibility impress each other with their forms, could not have been aware of the fact of crystallised hornblende penetrating phonolite, a rock undoubtedly of igneous origin. The viscidity, which it is now known, that both feldspar and quartz retain at a temperature much below their points of fusion, easily explains their mutual impressment. Consult on this subject Mr. Horner’s paper on Bonn, “Geolog. Transact.,” vol. iv, p. 439; and “L’Institut,” with respect to quartz, 1839, p. 161.