On the view of each organism with all its separate parts having been specially created, how utterly inexplicable is it that organs bearing the plain stamp of inutility, such as the teeth in the embryonic calf, or the shriveled wings under the soldered wing-covers of many beetles, should so frequently occur! Nature may be said to have taken pains to reveal her scheme of modification, by means of rudimentary organs, of embryological and homologous structures, but we are too blind to understand her meaning.

LETTERS RETAINED IN THE SPELLING BUT USELESS IN PRONUNCIATION.

Origin of Species,
page 401.

There remains, however, this difficulty. After an organ has ceased being used, and has become in consequence much reduced, how can it be still further reduced in size until the merest vestige is left; and how can it be finally quite obliterated? It is scarcely possible that disuse can go on producing any further effect after the organ has once been rendered functionless. Some additional explanation is here requisite which I can not give. If, for instance, it could be proved that every part of the organization tends to vary in a greater degree toward diminution than toward augmentation of size, then we should be able to understand how an organ which has become useless would be rendered, independently of the effects of disuse, rudimentary, and would at last be wholly suppressed; for the variations toward diminished size would no longer be checked by natural selection. The principle of the economy of growth, explained in a former chapter, by which the materials forming any part, if not useful to the possessor, are saved as far as is possible, will perhaps come into play in rendering a useless part rudimentary. But this principle will almost necessarily be confined to the earlier stages of the process of reduction; for we can not suppose that a minute papilla, for instance, representing in a male flower the pistil of the female flower, and formed merely of cellular tissue, could be further reduced or absorbed for the sake of economizing nutriment.

Finally, as rudimentary organs, by whatever steps they may have been degraded into their present useless condition, are the record of a former state of things, and have been retained solely through the power of inheritance, we can understand, on the genealogical view of classification, how it is that systematists, in placing organisms in their proper places in the natural system, have often found rudimentary parts as useful as, or even sometimes more useful than, parts of high physiological importance. Rudimentary organs may be compared with the letters in a word, still retained in the spelling, but become useless in the pronunciation, but which serve as a clew for its derivation. On the view of descent with modification, we may conclude that the existence of organs in a rudimentary, imperfect, and useless condition, or quite aborted, far from presenting a strange difficulty, as they assuredly do on the old doctrine of creation, might even have been anticipated in accordance with the views here explained.

MAN’S DEFICIENCY IN TAIL.

Descent of Man,
page 58.

According to a popular impression, the absence of a tail is eminently distinctive of man; but, as those apes which come nearest to him are destitute of this organ, its disappearance does not relate exclusively to man. The tail often differs remarkably in length within the same genus: thus in some species of Macacus it is longer than the whole body, and is formed of twenty-four vertebræ; in others it consists of a scarcely visible stump, containing only three or four vertebræ. In some kinds of baboons there are twenty-five, while in the mandrill there are ten very small stunted caudal vertebræ, or, according to Cuvier, sometimes only five. The tail, whether it be long or short, almost always tapers toward the end; and this, I presume, results from the atrophy of the terminal muscles, together with their arteries and nerves, through disuse, leading to the atrophy of the terminal bones. But no explanation can at present be given of the great diversity which often occurs in its length. Here, however, we are more specially concerned with the complete external disappearance of the tail. Professor Broca has recently shown that the tail in all quadrupeds consists of two portions, generally separated abruptly from each other; the basal portion consists of vertebræ, more or less perfectly channeled and furnished with apophyses like ordinary vertebræ; whereas those of the terminal portion are not channeled, are almost smooth, and scarcely resemble true vertebræ. A tail, though not externally visible, is really present in man and the anthropomorphous apes, and is constructed on exactly the same pattern in both. In the terminal portion the vertebræ, constituting the os coccyx, are quite rudimentary, being much reduced in size and number. In the basal portion, the vertebræ are likewise few, are united firmly together, and are arrested in development; but they have been rendered much broader and flatter than the corresponding vertebræ in the tails of other animals; they constitute what Broca calls the accessory sacral vertebræ. These are of functional importance by supporting certain internal parts and in other ways; and their modification is directly connected with the erect or semi-erect attitude of man and the anthropomorphous apes. This conclusion is the more trustworthy, as Broca formerly held a different view, which he has now abandoned. The modification, therefore, of the basal caudal vertebræ in man and the higher apes may have been effected, directly or indirectly, through natural selection.

But what are we to say about the rudimentary and variable vertebræ of the terminal portion of the tail, forming the os coccyx? A notion which has often been, and will no doubt again be ridiculed, namely, that friction has had something to do with the disappearance of the external portion of the tail, is not so ridiculous as it at first appears. Dr. Anderson states that the extremely short tail of Macacus brunneus is formed of eleven vertebræ, including the imbedded basal ones. The extremity is tendinous and contains no vertebræ; this is succeeded by five rudimentary ones, so minute that together they are only one line and a half in length, and these are permanently bent to one side in the shape of a hook. The free part of the tail, only a little above an inch in length, includes only four more small vertebræ. This short tail is carried erect; but about a quarter of its total length is doubled on to itself to the left; and this terminal part, which includes the hook-like portion, serves “to fill up the interspace between the upper divergent portion of the callosities”; so that the animal sits on it, and thus renders it rough and callous.

POINTS OF RESEMBLANCE BETWEEN MAN AND MONKEY.