The rocks here consist of several varieties of gneiss, with the feldspar often yellowish, granular and imperfectly crystallised, alternating with, and passing insensibly into, beds, from a few yards to nearly a mile in thickness, of fine or coarse grained, dark-green hornblendic slate; this again often passing into chloritic schist. These passages seem chiefly due to changes in the mica, and its replacement by other minerals. At Rat Island I examined a mass of chloritic schist, only a few yards square, irregularly surrounded on all sides by the gneiss, and intricately penetrated by many curvilinear veins of quartz, which gradually BLEND into the gneiss: the cleavage of the chloritic schist and the foliation of the gneiss were exactly parallel. Eastward of the city there is much fine- grained, dark-coloured gneiss, almost assuming the character of hornblende- slate, which alternates in thin laminae with laminae of quartz, the whole mass being transversely intersected by numerous large veins of quartz: I particularly observed that these veins were absolutely continuous with the alternating laminae of quartz. In this case and at Rat Island, the passage of the gneiss into imperfect hornblendic or into chloritic slate, seemed to be connected with the segregation of the veins of quartz. (Mr. Greenough page 78 “Critical Examination” etc., observes that quartz in mica-slate sometimes appears in beds and sometimes in veins. Von Buch also in his “Travels in Norway” page 236, remarks on alternating laminae of quartz and hornblende-slate replacing mica-schist.)

The Mount, a hill believed to be 450 feet in height, from which the place takes its name, is much the highest land in this neighbourhood: it consists of hornblendic slate, which (except on the eastern and disturbed base) has an east and west nearly vertical cleavage; the longer axis of the hill also ranges in this same line. Near the summit the hornblende-slate gradually becomes more and more coarsely crystallised, and less plainly laminated, until it passes into a heavy, sonorous greenstone, with a slaty conchoidal fracture; the laminae on the north and south sides near the summit dip inwards, as if this upper part had expanded or bulged outwards. This greenstone must, I conceive, be considered as metamorphosed hornblende- slate. The Cerrito, the next highest, but much less elevated point, is almost similarly composed. In the more western parts of the province, besides gneiss, there is quartz-rock, syenite, and granite; and at Colla, I heard of marble.

Near M. Video, the space which I more accurately examined was about fifteen miles in an east and west line, and here I found the foliation of the gneiss and the cleavage of the slates generally well developed, and extending parallel to the alternating strata composed of the gneiss, hornblendic and chloritic schists. These planes of division all range within one point of east and west, frequently east by south and west by north; their dip is generally almost vertical, and scarcely anywhere under 45 degrees: this fact, considering how slightly undulatory the surface of the country is, deserves attention. Westward of M. Video, towards the Uruguay, wherever the gneiss is exposed, the highly inclined folia are seen striking in the same direction; I must except one spot where the strike was N.W. by W. The little Sierra de S. Juan, formed of gneiss and laminated quartz, must also be excepted, for it ranges between [N. to N.E.] and [S. to S.W.] and seems to belong to the same system with the hills in the Maldonado district. Finally, we have seen that, for many miles northward of Maldonado and for twenty-five miles westward of it, as far as the S. de las Animas, the foliation, cleavage, so-called stratification and lines of hills, all range N.N.E. and S.S.W., which is nearly coincident with the adjoining coast of the Atlantic. Westward of the S. de las Animas, as far as even the Uruguay, the foliation, cleavage, and stratification (but not lines of hills, for there are no defined ones) all range about E. by S. and W. by N., which is nearly coincident with the direction of the northern shore of the Plata; in the confused country near Las Minas, where these two great systems appear to intersect each other, the cleavage, foliation, and stratification run in various directions, but generally coincide with the line of each separate hill.

SOUTHERN LA PLATA.

The first ridge, south of the Plata, which projects through the Pampean formation, is the Sierra Tapalguen and Vulcan, situated 200 miles southward of the district just described. This ridge is only a few hundred feet in height, and runs from C. Corrientes in a W.N.W. line for at least 150 miles into the interior: at Tapalguen, it is composed of unstratified granular quartz, remarkable from forming tabular masses and small plains, surrounded by precipitous cliffs: other parts of the range are said to consist of granite: and marble is found at the S. Tinta. It appears from M. Parchappe’s observations, that at Tandil there is a range of quartzose gneiss, very like the rocks of the S. Larga near Maldonado, running in the same N.N.E. and S.S.W. direction; so that the framework of the country here is very similar to that on the northern shore of the Plata. (M. d’Orbigny’s “Voyage” Part. Geolog. page 46. I have given a short account of the peculiar forms of the quartz hills of Tapalguen, so unusual in a metamorphic formation, in my “Journal of Researches” 2nd edition page 116.)

The Sierra Guitru-gueyu is situated sixty miles south of the S. Tapalguen: it consists of numerous parallel, sometimes blended together ridges, about twenty-three miles in width, and five hundred feet in height above the plain, and extending in a N.W. and S.E. direction. Skirting round the extreme S.E. termination, I ascended only a few points, which were composed of a fine-grained gneiss, almost composed of feldspar with a little mica, and passing in the upper parts of the hills into a rather compact purplish clay-slate. The cleavage was nearly vertical, striking in a N.W. by W. and S.E. by E. line, nearly, though not quite, coincident with the direction of the parallel ridges.

The Sierra Ventana lies close south of that of Guitru-gueyu; it is remarkable from attaining a height, very unusual on this side of the continent, of 3,340 feet. It consists up to its summit, of quartz, generally pure and white, but sometimes reddish, and divided into thick laminae or strata: in one part there is a little glossy clay-slate with a tortuous cleavage. The thick layers of quartz strike in a W. 30 degrees N. line, dipping southerly at an angle of 45 degrees and upwards. The principal line of mountains, with some quite subordinate parallel ridges, range about W. 45 degrees N.: but at their S.E. termination, only W. 25 degrees N. This Sierra is said to extend between twenty and thirty leagues into the interior.

PATAGONIA.

With the exception perhaps of the hill of S. Antonio (600 feet high) in the Gulf of S. Matias, which has never been visited by a geologist, crystalline rocks are not met with on the coast of Patagonia for a space of 380 miles south of the S. Ventana. At this point (latitude 43 degrees 50 minutes), at Points Union and Tombo, plutonic rocks are said to appear, and are found, at rather wide intervals, beneath the Patagonian tertiary formation for a space of about three hundred miles southward, to near Bird Island, in latitude 48 degrees 56 minutes. Judging from specimens kindly collected for me by Mr. Stokes, the prevailing rock at Ports St. Elena, Camerones, Malaspina, and as far south as the Paps of Pineda, is a purplish-pink or brownish claystone porphyry, sometimes laminated, sometimes slightly vesicular, with crystals of opaque feldspar and with a few grains of quartz; hence these porphyries resemble those immediately to be described at Port Desire, and likewise a series which I have seen from P. Alegre on the southern confines of Brazil. This porphyritic formation further resembles in a singularly close manner the lowest stratified formation of the Cordillera of Chile, which, as we shall hereafter see, has a vast range, and attains a great thickness. At the bottom of the Gulf of St. George, only tertiary deposits appear to be present. At Cape Blanco, there is quartz rock, very like that of the Falkland Islands, and some hard, blue siliceous clay-slate.

At Port Desire there is an extensive formation of the claystone porphyry, stretching at least twenty-five miles into the interior: it has been denuded and deeply worn into gullies before being covered up by the tertiary deposits, through which it here and there projects in hills; those north of the bay being 440 feet in height. The strata have in several places been tilted at small angles, generally either to N.N.W. or S.S.E. By gradual passages and alternations, the porphyries change incessantly in nature. I will describe only some of the principal mineralogical changes, which are highly instructive, and which I carefully examined. The prevailing rock has a compact purplish base, with crystals of earthy or opaque feldspar, and often with grains of quartz. There are other varieties, with an almost truly trachytic base, full of little angular vesicles and crystals of glassy feldspar; and there are beds of black perfect pitchstone, as well as of a concretionary imperfect variety. On a casual inspection, the whole series would be thought to be of the same plutonic or volcanic nature with the trachytic varieties and pitchstone; but this is far from being the case, as much of the porphyry is certainly of metamorphic origin. Besides the true porphyries, there are many beds of earthy, quite white or yellowish, friable, easily fusible matter, resembling chalk, which under the microscope is seen to consist of minute broken crystals, and which, as remarked in a former chapter, singularly resembles the upper tufaceous beds of the Patagonian tertiary formation. This earthy substance often becomes coarser, and contains minute rounded fragments of porphyries and rounded grains of quartz, and in one case so many of the latter as to resemble a common sandstone. These beds are sometimes marked with true lines of aqueous deposition, separating particles of different degrees of coarseness; in other cases there are parallel ferruginous lines not of true deposition, as shown by the arrangement of the particles, though singularly resembling them. The more indurated varieties often include many small and some larger angular cavities, which appear due to the removal of earthy matter: some varieties contain mica. All these earthy and generally white stones insensibly pass into more indurated sonorous varieties, breaking with a conchoidal fracture, yet of small specific gravity; many of these latter varieties assume a pale purple tint, being singularly banded and veined with different shades, and often become plainly porphyritic with crystals of feldspar. The formation of these crystals could be most clearly traced by minute angular and often partially hollow patches of earthy matter, first assuming a FIBROUS STRUCTURE, then passing into opaque imperfectly shaped crystals, and lastly, into perfect glassy crystals. When these crystals have appeared, and when the basis has become compact, the rock in many places could not be distinguished from a true claystone porphyry without a trace of mechanical structure.