Northward of Concepcion, as far as Copiapo, the shores of the Pacific consist, with the exception of some small tertiary basins, of gneiss, mica- schist, altered clay-slate, granite, greenstone and syenite: hence the coast from Tres Montes to Copiapo, a distance of 1,200 miles, and I have reason to believe for a much greater space, is almost similarly constituted.

Near Valparaiso the prevailing rock is gneiss, generally including much hornblende: concretionary balls formed of feldspar, hornblende and mica, from two or three feet in diameter, are in very many places conformably enfolded by the foliated gneiss: veins of quartz and feldspar, including black schorl and well-crystallised epidote, are numerous. Epidote likewise occurs in the gneiss in thin layers, parallel to the foliation of the mass. One large vein of a coarse granitic character was remarkable from in one part quite changing its character, and insensibly passing into a blackish porphyry, including acicular crystals of glassy feldspar and of hornblende: I have never seen any other such case. (Humboldt “Personal Narrative” volume 4 page 60, has described with much surprise, concretionary balls, with concentric divisions, composed of partially vitreous feldspar, hornblende, and garnets, included within great veins of gneiss, which cut across the mica-slate near Venezuela.)

I shall in the few following remarks on the rocks of Chile allude exclusively to their foliation and cleavage. In the gneiss round Valparaiso the strike of the foliation is very variable, but I think about N. by W. and S. by E. is the commonest direction; this likewise holds good with the cleavage of the altered feldspathic clay-slates, occasionally met with on the coast for ninety miles north of Valparaiso. Some feldspathic slate, alternating with strata of claystone porphyry in the Bell of Quillota and at Jajuel, and therefore, perhaps, belonging to a later period than the metamorphic schists on the coast, cleaved in this same direction. In the Eastern Cordillera, in the Portillo Pass, there is a grand mass of mica- slate, foliated in a north and south line, and with a high westerly dip: in the Uspallata range, clay-slate and grauwacke have a highly inclined, nearly north and south cleavage, though in some parts the strike is irregular: in the main or Cumbre range, the direction of the cleavage in the feldspathic clay-slate is N.W. and S.E.

Between Coquimbo and Guasco there are two considerable formations of mica- slate, in one of which the rock passed sometimes into common clay-slate and sometimes into a glossy black variety, very like that in the Chonos Archipelago. The folia and cleavage of these rocks ranged between [N. and N.W. by N.] and [S. and S.W. by S.]. Near the Port of Guasco several varieties of altered clay-slate have a quite irregular cleavage. Between Guasco and Copiapo, there are some siliceous and talcaceous slates cleaving in a north and south line, with an easterly dip of between 60 and 70 degrees: high up, also, the main valley of Copiapo, there is mica-slate with a high easterly dip. In the whole space between Valparaiso and Copiapo an easterly dip is much more common than an opposite or westerly one.

CONCLUDING REMARKS ON CLEAVAGE AND FOLIATION.

In this southern part of the southern hemisphere, we have seen that the cleavage-laminae range over wide areas with remarkable uniformity, cutting straight through the planes of stratification, but yet being parallel in strike to the main axes of elevation, and generally to the outlines of the coast. (In my paper on the Falkland Islands “Geological Journal” volume 3 page 267, I have given a curious case on the authority of Captain Sulivan, R.N., of much folded beds of clay-slate, in some of which the cleavage is perpendicular to the horizon, and in others it is perpendicular to each curvature or fold of the bed: this appears a new case.) The dip, however, is as variable, both in angle and in direction (that is, sometimes being inclined to the one side and sometimes to the directly opposite side), as the strike is uniform. In all these respects there is a close agreement with the facts given by Professor Sedgwick in his celebrated memoir in the “Geological Transactions,” and by Sir R.I. Murchison in his various excellent discussions on this subject. The Falkland Islands, and more especially Tierra del Fuego, offer striking instances of the lines of cleavage, the principle axes of elevation, and the outlines of the coast, gradually changing together their courses. The direction which prevails throughout Tierra del Fuego and the Falkland Islands, namely, from west with some northing to east with some southing, is also common to the several ridges in Northern Patagonia and in the western parts of Banda Oriental: in this latter province, in the Sierra Tapalguen, and in the Western Falkland Island, the W. by N., or W.N.W. and E.S.E., ridges, are crossed at right angles by others ranging N.N.E. and S.S.W.

The fact of the cleavage-laminae in the clay-slate of Tierra del Fuego, where seen cutting straight through the planes of stratification, and where consequently there could be no doubt about their nature, differing slightly in colour, texture, and hardness, appears to me very interesting. In a thick mass of laminated, feldspathic and altered clay-slate, interposed between two great strata of porphyritic conglomerate in Central Chile, and where there could be but little doubt about the bedding, I observed similar slight differences in composition, and likewise some distinct thin layers of epidote, parallel to the highly inclined cleavage of the mass. Again, I incidentally noticed in North Wales, where glaciers had passed over the truncated edges of the highly inclined laminae of clay-slate, that the surface, though smooth, was worn into small parallel undulations, caused by the competent laminae being of slightly different degrees of hardness. (“London Philosophical Magazine” volume 21 page 182.) With reference to the slates of North Wales, Professor Sedgwick describes the planes of cleavage, as “coated over with chlorite and semi-crystalline matter, which not only merely define the planes in question, but strike in parallel flakes through the whole mass of the rock.” (“Geological Transactions” volume 3 page 471.) In some of those glossy and hard varieties of clay-slate, which may often be seen passing into mica-schist, it has appeared to me that the cleavage- planes were formed of excessively thin, generally slighted convoluted, folia, composed of microscopically minute scales of mica. From these several facts, and more especially from the case of the clay-slate in Tierra del Fuego, it must, I think, be concluded, that the same power which has impressed on the slate its fissile structure or cleavage has tended to modify its mineralogical character in parallel planes.

Let us now turn to the foliation of the metamorphic schists, a subject which has been much less attended to. As in the case of cleavage-laminae, the folia preserve over very large areas a uniform strike: thus Humboldt found for a distance of 300 miles in Venezuela, and indeed over a much larger space, gneiss, granite, mica, and clay-slate, striking very uniformly N.E. and S.W., and dipping at an angle of between 60 and 70 degrees to N.W. (“Personal Narrative” volume 6 page 59 et seq.); it would even appear from the facts given in this chapter, that the metamorphic rocks throughout the north-eastern part of South America are generally foliated within two points of N.E. and S.W. Over the eastern parts of Banda Oriental, the foliation strikes with a high inclination, very uniformly N.N.E. to S.S.W., and over the western parts, in a W. by N. and E. by S. line. For a space of 300 miles on the shores of the Chonos and Chiloe Islands, we have seen that the foliation seldom deviates more than a point of the compass from a N. 19 degrees W. and S. 19 degrees E. strike. As in the case of cleavage, the angle of the dip in foliated rocks is generally high but variable, and alternates from one side of the line of strike to the other side, sometimes being vertical: in the Northern Chonos Islands, however, the folia are inclined almost always to the west; in nearly the same manner, the cleavage-laminae in Southern Tierra del Fuego certainly dip much more frequently to S.S.W. than to the opposite point. In Eastern Banda Oriental, in parts of Brazil, and in some other districts, the foliation runs in the same direction with the mountain-ranges and adjoining coast-lines: amongst the Chonos Islands, however, this coincidence fails, and I have given my reasons for suspecting that one granitic axis has burst through and tilted the already inclined folia of mica-schist: in the case of cleavage, the coincidence between its strike and that of the main stratification seems sometimes to fail. (Cases are given by Mr. Jukes in his “Geology of Newfoundland” page 130.) Foliation and cleavage resemble each other in the planes winding round concretions, and in becoming tortuous where veins of quartz abound. (I have seen in Brazil and Chile concretions thus enfolded by foliated gneiss; and Macculloch “Highlands” volume 1 page 64, has described a similar case. For analogous cases in clay-slate, see Professor Henslow’s Memoir in “Cambridge Philosophical Transactions” volume 1 page 379, and Macculloch’s “Classification of Rocks” page 351. With respect to both foliation and cleavage becoming tortuous where quartz-veins abound, I have seen instances near Monte Video, at Concepcion, and in the Chonos Islands. See also Mr. Greenough’s “Critical Examination” page 78.) On the flanks of the mountains both in Tierra del Fuego and in other countries, I have observed that the cleavage-planes frequently dip at a high angle inwards; and this was long ago observed by Von Buch to be the case in Norway: this fact is perhaps analogous to the folded, fan-like or radiating structure in the metamorphic schists of the Alps, in which the folia in the central crests are vertical and on the two flanks inclined inwards. (Studer in “Edinburgh New Philosophical Journal” volume 23 page 144.) Where masses of fissile and foliated rocks alternate together, the cleavage and foliation, in all cases which I have seen, are parallel. Where in one district the rocks are fissile, and in another adjoining district they are foliated, the planes of cleavage and foliation are likewise generally parallel: this is the case with the feldspathic homogeneous slates in the southern part of the Chonos group, compared with the fine foliated mica-schists of the northern part; so again the clay- slate of the whole eastern side of Tierra del Fuego cleaves in exactly the same line with the foliated gneiss and mica-slate of the western coast; other analogous instances might have been adduced. (I have given a case in Australia. See my “Volcanic Islands.”)

With respect to the origin of the folia of quartz, mica, feldspar, and other minerals composing the metamorphic schists, Professor Sedgwick, Mr. Lyell, and most authors believe, that the constituent parts of each layer were separately deposited as sediment, and then metamorphosed. This view, in the majority of cases, I believe to be quite untenable. In those not uncommon instances, where a mass of clay-slate, in approaching granite, gradually passes into gneiss, we clearly see that folia of distinct minerals can originate through the metamorphosis of a homogeneous fissile rock. (I have described in “Volcanic Islands” a good instance of such a passage at the Cape of Good Hope.) The deposition, it may be remarked, of numberless alternations of pure quartz, and of the elements of mica or feldspar does not appear a probable event. (See some excellent remarks on this subject, in D’Aubuisson’s “Traite de Geog.” tome 1 page 297. Also some remarks by Mr. Dana in “Silliman’s American Journal” volume 45 page 108.) In those districts in which the metamorphic schists are foliated in planes parallel to the cleavage of the rocks in an adjoining district, are we to believe that the folia are due to sedimentary layers, whilst the cleavage- laminae, though parallel, have no relation whatever to such planes of deposition? On this view, how can we reconcile the vastness of the areas over which the strike of the foliation is uniform, with what we see in disturbed districts composed of true strata: and especially, how can we understand the high and even vertical dip throughout many wide districts, which are not mountainous, and throughout some, as in Western Banda Oriental, which are not even hilly? Are we to admit that in the northern part of the Chonos Archipelago, mica-slate was first accumulated in parallel horizontal folia to a thickness of about four geographical miles, and then upturned at an angle of forty degrees; whilst, in the southern part of this same Archipelago, the cleavage-laminae of closely allied rocks, which none would imagine had ever been horizontal, dip at nearly the same angle, to nearly the same point?

Seeing, then, that foliated schists indisputably are sometimes produced by the metamorphosis of homogeneous fissile rocks; seeing that foliation and cleavage are so closely analogous in the several above-enumerated respects; seeing that some fissile and almost homogeneous rocks show incipient mineralogical changes along the planes of their cleavage, and that other rocks with a fissile structure alternate with, and pass into varieties with a foliated structure, I cannot doubt that in most cases foliation and cleavage are parts of the same process: in cleavage there being only an incipient separation of the constituent minerals; in foliation a much more complete separation and crystallisation.