The summit of a bladder was examined, and all the glands found colourless, with their primordial utricles not at all shrunk; yet many of the oblong glands contained granules just resolvable with No. 8 of Hartnack. It was then irrigated with a few drops of a solution of one part of urea to 218 of water. After 2 hrs. 25 m. the spherical glands were still colourless; whilst the oblong and two-armed ones were of a brownish tint, and their primordial utricles much shrunk, some containing distinctly visible granules. After 9 hrs. some of the spherical glands were brownish, and the oblong glands were still more changed, but they contained fewer separate granules; their nuclei, on the other hand, appeared larger, as if they had absorbed the granules. After 23 hrs. all the glands were brown, their primordial utricles greatly shrunk, and in many cases ruptured.
A bladder was now experimented on, which was already somewhat affected by the surrounding water; for the spherical glands, though colourless, had their primordial utricles slightly shrunk; and the oblong glands were brownish, with their utricles much, but irregularly, shrunk. The summit was treated with the solution of urea, but was little affected by it in 9 hrs.; nevertheless, after 23 hrs. the spherical glands were brown, with their utricles more shrunk; several of the other glands were still browner, with their utricles contracted into irregular little masses.
Two other summits, with their glands colourless and their utricles not shrunk, were treated with the same solution of urea. After 5 hrs. many of the glands presented a shade of brown, with their utricles slightly shrunk. After 20 hrs. 40 m. some few of them were quite brown, and contained [page 421] irregularly aggregated masses; others were still colourless, though their utricles were shrunk; but the greater number were not much affected. This was a good instance of how unequally the glands on the same bladder are sometimes affected, as likewise often occurs with plants growing in foul water. Two other summits were treated with a solution which had been kept during several days in a warm room, and their glands were not at all affected when examined after 21 hrs.
A weaker solution of one part of urea to 437 of water was next tried on six summits, all carefully examined before being irrigated. The first was re-examined after 8 hrs. 30 m., and the glands, including the spherical ones, were brown; many of the oblong glands having their primordial utricles much shrunk and including granules. The second summit, before being irrigated, had been somewhat affected by the surrounding water, for the spherical glands were not quite uniform in appearance; and a few of the oblong ones were brown, with their utricles shrunk. Of the oblong glands, those which were before colourless, became brown in 3 hrs. 12 m. after irrigation, with their utricles slightly shrunk. The spherical glands did not become brown, but their contents seemed changed in appearance, and after 23 hrs. still more changed and granular. Most of the oblong glands were now dark brown, but their utricles were not greatly shrunk. The four other specimens were examined after 3 hrs. 30 m., after 4 hrs., and 9 hrs.; a brief account of their condition will be sufficient. The spherical glands were not brown, but some of them were finely granular. Many of the oblong glands were brown, and these, as well as others which still remained colourless, had their utricles more or less shrunk, some of them including small aggregated masses of matter.]
A Summary of the Observations on Absorption.—From the facts now given there can be no doubt that the variously shaped glands on the valve and round the collar have the power of absorbing matter from weak solutions of certain salts of ammonia and urea, and from a putrid infusion of raw meat. Prof. Cohn believes that they secrete slimy matter; but I was not able to perceive any trace of such action, excepting that, after immersion in alcohol, extremely fine lines could sometimes be seen radiating from their [page 422] surfaces. The glands are variously affected by absorption; they often become of a brown colour; sometimes they contain very fine granules, or moderately sized grains, or irregularly aggregated little masses; sometimes the nuclei appear to have increased in size; the primordial utricles are generally more or less shrunk and sometimes ruptured. Exactly the same changes may be observed in the glands of plants growing and flourishing in foul water. The spherical glands are generally affected rather differently from the oblong and two-armed ones. The former do not so commonly become brown, and are acted on more slowly. We may therefore infer that they differ somewhat in their natural functions.
It is remarkable how unequally the glands on the bladders on the same branch, and even the glands of the same kind on the same bladder, are affected by the foul water in which the plants have grown, and by the solutions which were employed. In the former case I presume that this is due either to little currents bringing matter to some glands and not to others, or to unknown differences in their constitution. When the glands on the same bladder are differently affected by a solution, we may suspect that some of them had previously absorbed a small amount of matter from the water. However this may be, we have seen that the glands on the same leaf of Drosera are sometimes very unequally affected, more especially when exposed to certain vapours.
If glands which have already become brown, with their primordial utricles shrunk, are irrigated with one of the effective solutions, they are not acted on, or only slightly and slowly. If, however, a gland contains merely a few coarse granules, this does not prevent a solution from acting. I have never seen [page 423] any appearance making it probable that glands which have been strongly affected by absorbing matter of any kind are capable of recovering their pristine, colourless, and homogeneous condition, and of regaining the power of absorbing.
From the nature of the solutions which were tried, I presume that nitrogen is absorbed by the glands; but the modified, brownish, more or less shrunk, and aggregated contents of the oblong glands were never seen by me or by my son to undergo those spontaneous changes of form characteristic of protoplasm. On the other hand, the contents of the larger spherical glands often separated into small hyaline globules or irregularly shaped masses, which changed their forms very slowly and ultimately coalesced, forming a central shrunken mass. Whatever may be the nature of the contents of the several kinds of glands, after they have been acted on by foul water or by one of the nitrogenous solutions, it is probable that the matter thus generated is of service to the plant, and is ultimately transferred to other parts.
The glands apparently absorb more quickly than do the quadrifid and bifid processes; and on the view above maintained, namely that they absorb matter from putrid water occasionally emitted from the bladders, they ought to act more quickly than the processes; as these latter remain in permanent contact with captured and decaying animals.
Finally, the conclusion to which we are led by the foregoing experiments and observations is that the bladders have no power of digesting animal matter, though it appears that the quadrifids are somewhat affected by a fresh infusion of raw meat. It is certain that the processes within the bladders, and the glands outside, absorb matter from salts of [page 424] ammonia, from a putrid infusion of raw meat, and from urea. The glands apparently are acted on more strongly by a solution of urea, and less strongly by an infusion of raw meat, than are the processes. The case of urea is particularly interesting, because we have seen that it produces no effect on Drosera, the leaves of which are adapted to digest fresh animal matter. But the most important fact of all is, that in the present and following species the quadrifid and bifid processes of bladders containing decayed animals generally include little masses of spontaneously moving protoplasm; whilst such masses are never seen in perfectly clean bladders.