The secretion of Drosera and gastric juice were both able to dissolve some element or impurity out of the globulin and haematin employed by me. The secretion also dissolved something out of chemically [page 131] prepared casein, which is said to consist of two substances; and although Schiff asserts that casein in this state is not attacked by gastric juice, he might easily have overlooked a minute quantity of some albuminous matter, which Drosera would detect and absorb. Again, fibro-cartilage, though not properly dissolved, is acted on in the same manner, both by the secretion of Drosera and gastric juice. But this substance, as well as the so-called haematin used by me, ought perhaps to have been classed with indigestible substances.

That gastric juice acts by means of its ferment, pepsin, solely in the presence of an acid, is well established; and we have excellent evidence that a ferment is present in the secretion of Drosera, which likewise acts only in the presence of an acid; for we have seen that when the secretion is neutralised by minute drops of the solution of an alkali, the digestion of albumen is completely stopped, and that on the addition of a minute dose of hydrochloric acid it immediately recommences.

The nine following substances, or classes of substances, namely, epidermic productions, fibro-elastic tissue, mucin, pepsin, urea, chitine, cellulose, gun-cotton, chlorophyll, starch, fat and oil, are not acted on by the secretion of Drosera; nor are they, as far as is known, by the gastric juice of animals. Some soluble matter, however, was extracted from the mucin, pepsin, and chlorophyll, used by me, both by the secretion and by artificial gastric juice.

The several substances, which are completely dissolved by the secretion, and which are afterwards absorbed by the glands, affect the leaves rather differently. They induce inflection at very different [page 132] rates and in very different degrees; and the tentacles remain inflected for very different periods of time. Quick inflection depends partly on the quantity of the substance given, so that many glands are simultaneously affected, partly on the facility with which it is penetrated and liquefied by the secretion, partly on its nature, but chiefly on the presence of exciting matter already in solution. Thus saliva, or a weak solution of raw meat, acts much more quickly than even a strong solution of gelatine. So again leaves which have re-expanded, after absorbing drops of a solution of pure gelatine or isinglass (the latter being the more powerful of the two), if given bits of meat, are inflected much more energetically and quickly than they were before, notwithstanding that some rest is generally requisite between two acts of inflection. We probably see the influence of texture in gelatine and globulin when softened by having been soaked in water acting more quickly than when merely wetted. It may be partly due to changed texture, and partly to changed chemical nature, that albumen, which had been kept for some time, and gluten which had been subjected to weak hydrochloric acid, act more quickly than these substances in their fresh state.

The length of time during which the tentacles remain inflected largely depends on the quantity of the substance given, partly on the facility with which it is penetrated or acted on by the secretion, and partly on its essential nature. The tentacles always remain inflected much longer over large bits or large drops than over small bits or drops. Texture probably plays a part in determining the extraordinary length of time during which the tentacles remain inflected [page 133] over the hard grains of chemically prepared casein. But the tentacles remain inflected for an equally long time over finely powdered, precipitated phosphate of lime; phosphorus in this latter case evidently being the attraction, and animal matter in the case of casein. The leaves remain long inflected over insects, but it is doubtful how far this is due to the protection afforded by their chitinous integuments; for animal matter is soon extracted from insects (probably by exosmose from their bodies into the dense surrounding secretion), as shown by the prompt inflection of the leaves. We see the influence of the nature of different substances in bits of meat, albumen, and fresh gluten acting very differently from equal-sized bits of gelatine, areolar tissue, and the fibrous basis of bone. The former cause not only far more prompt and energetic, but more prolonged, inflection than do the latter. Hence we are, I think, justified in believing that gelatine, areolar tissue, and the fibrous basis of bone, would be far less nutritious to Drosera than such substances as insects, meat, albumen, &c. This is an interesting conclusion, as it is known that gelatine affords but little nutriment to animals; and so, probably, would areolar tissue and the fibrous basis of bone. The chondrin which I used acted more powerfully than gelatine, but then I do not know that it was pure. It is a more remarkable fact that fibrin, which belongs to the great class of Proteids,* including albumen in one of its sub-groups, does not excite the tentacles in a greater degree, or keep them inflected for a longer time, than does gelatine, or

* See the classification adopted by Dr. Michael Foster in Watts’ ‘Dictionary of Chemistry,’ Supplement 1872, page 969. [page 134]

areolar tissue, or the fibrous basis of bone. It is not known how long an animal would survive if fed on fibrin alone, but Dr. Sanderson has no doubt longer than on gelatine, and it would be hardly rash to predict, judging from the effects on Drosera, that albumen would be found more nutritious than fibrin. Globulin likewise belongs to the Proteids, forming another sub-group, and this substance, though containing some matter which excited Drosera rather strongly, was hardly attacked by the secretion, and was very little or very slowly attacked by gastric juice. How far globulin would be nutritious to animals is not known. We thus see how differently the above specified several digestible substances act on Drosera; and we may infer, as highly probable, that they would in like manner be nutritious in very different degrees both to Drosera and to animals.

The glands of Drosera absorb matter from living seeds, which are injured or killed by the secretion. They likewise absorb matter from pollen, and from fresh leaves; and this is notoriously the case with the stomachs of vegetable-feeding animals. Drosera is properly an insectivorous plant; but as pollen cannot fail to be often blown on to the glands, as will occasionally the seeds and leaves of surrounding plants, Drosera is, to a certain extent, a vegetable-feeder.

Finally, the experiments recorded in this chapter show us that there is a remarkable accordance in the power of digestion between the gastric juice of animals with its pepsin and hydrochloric acid and the secretion of Drosera with its ferment and acid belonging to the acetic series. We can, therefore, hardly doubt that the ferment in both cases is closely similar, [page 135] if not identically the same. That a plant and an animal should pour forth the same, or nearly the same, complex secretion, adapted for the same purpose of digestion, is a new and wonderful fact in physiology. But I shall have to recur to this subject in the fifteenth chapter, in my concluding remarks on the Droseraceae. [page 136]