[Acetate of Strychnine.—Half-minims of a solution of one part to 437 of water were placed on the discs of six leaves; so that each received 1/960 of a grain, or .0675 mg. In 2 hrs. 30 m. the outer tentacles on some of them were inflected, but in an irregular manner, sometimes only on one side of the leaf. The next morning, after 22 hrs. 30 m. the inflection had not increased. The glands on the central disc were blackened, and had ceased secreting. After an additional 24 hrs. all the central glands seemed dead, but the inflected tentacles had re-expanded and appeared quite healthy. Hence the poisonous action of strychnine seems confined to the glands which have absorbed it; nevertheless, these glands transmit a motor impulse to the exterior tentacles. Minute drops (about 1/20 of a minim) of the same solution applied to the glands of the outer tentacles occasionally caused them to bend. The poison does not seem to act quickly, for having applied to several glands similar drops of a rather stronger solution, of one part to 292 of water, this did not prevent the tentacles bending, when their glands [page 200] were excited, after an interval of a quarter to three quarters of an hour, by being rubbed or given bits of meat. Similar drops of a solution of one part to 218 of water (2 grs. to 1 oz.) quickly blackened the glands; some few tentacles thus treated moved, whilst others did not. The latter, however, on being subsequently moistened with saliva or given bits of meat, became incurved, though with extreme slowness; and this shows that they had been injured. Stronger solutions (but the strength was not ascertained) sometimes arrested all power of movement very quickly; thus bits of meat were placed on the glands of several exterior tentacles, and as soon as they began to move, minute drops of the strong solution were added. They continued for a short time to go on bending, and then suddenly stood still; other tentacles on the same leaves, with meat on their glands, but not wetted with the strychnine, continued to bend and soon reached the centre of the leaf.
Citrate of Strychnine.—Half-minims of a solution of one part to 437 of water were placed on the discs of six leaves; after 24 hrs. the outer tentacles showed only a trace of inflection. Bits of meat were then placed on three of these leaves, but in 24 hrs. only slight and irregular inflection occurred, proving that the leaves had been greatly injured. Two of the leaves to which meat had not been given had their discal glands dry and much injured. Minute drops of a strong solution of one part to 109 of water (4 grs. to 1 oz.) were added to the secretion round several glands, but did not produce nearly so plain an effect as the drops of a much weaker solution of the acetate. Particles of the dry citrate were placed on six glands; two of these moved some way towards the centre, and then stood still, being no doubt killed; three others curved much farther inwards, and were then fixed; one alone reached the centre. Five leaves were immersed, each in thirty minims of a solution of one part to 437 of water; so that each received 1/16 of a grain; after about 1 hr. some of the outer tentacles became inflected, and the glands were oddly mottled with black and white. These glands, in from 4 hrs. to 5 hrs., became whitish and opaque, and the protoplasm in the cells of the tentacles was well aggregated. By this time two of the leaves were greatly inflected, but the three others not much more inflected than they were before. Nevertheless two fresh leaves, after an immersion respectively for 2 hrs. and 4 hrs. in the solution, were not killed; for on being left for 1 hr. 30 m. in a solution of one part of carbonate of ammonia to 218 of water, their tentacles became more inflected, and there was much aggregation. The glands [page 201] of two other leaves, after an immersion for 2 hrs. in a stronger solution, of one part of the citrate to 218 of water, became of an opaque, pale pink colour, which before long disappeared, leaving them white. One of these two leaves had its blade and tentacles greatly inflected; the other hardly at all; but the protoplasm in the cells of both was aggregated down to the bases of the tentacles, with the spherical masses in the cells close beneath the glands blackened. After 24 hrs. one of these leaves was colourless, and evidently dead.
Sulphate of Quinine.—Some of this salt was added to water, which is said to dissolve 1/1000 part of its weight. Five leaves were immersed, each in thirty minims of this solution, which tasted bitter. In less than 1 hr. some of them had a few tentacles inflected. In 3 hrs. most of the glands became whitish, others dark-coloured, and many oddly mottled. After 6 hrs. two of the leaves had a good many tentacles inflected, but this very moderate degree of inflection never increased. One of the leaves was taken out of the solution after 4 hrs., and placed in water; by the next morning some few of the inflected tentacles had re-expanded, showing that they were not dead; but the glands were still much discoloured. Another leaf not included in the above lot, after an immersion of 3 hrs. 15 m., was carefully examined; the protoplasm in the cells of the outer tentacles, and of the short green ones on the disc, had become strongly aggregated down to their bases; and I distinctly saw that the little masses changed their positions and shapes rather rapidly; some coalescing and again separating. I was surprised at this fact, because quinine is said to arrest all movement in the white corpuscles of the blood; but as, according to Binz,* this is due to their being no longer supplied with oxygen by the red corpuscles, any such arrestment of movement could not be expected in Drosera. That the glands had absorbed some of the salt was evident from their change of colour; but I at first thought that the solution might not have travelled down the cells of the tentacles, where the protoplasm was seen in active movement. This view, however, I have no doubt, is erroneous, for a leaf which had been immersed for 3 hrs. in the quinine solution was then placed in a little solution of one part of carbonate of ammonia to 218 of water; and in 30 m. the glands and the upper cells of the tentacles became intensely black, with the protoplasm presenting a very unusual appearance; for it
* ‘Quarterly Journal of Microscopical Science,’ April 1874, p. 185. [page 202]
had become aggregated into reticulated dingy-coloured masses, having rounded and angular interspaces. As I have never seen this effect produced by the carbonate of ammonia alone, it must be attributed to the previous action of the quinine. These reticulated masses were watched for some time, but did not change their forms; so that the protoplasm no doubt had been killed by the combined action of the two salts, though exposed to them for only a short time.
Another leaf, after an immersion for 24 hrs. in the quinine solution, became somewhat flaccid, and the protoplasm in all the cells was aggregated. Many of the aggregated masses were discoloured, and presented a granular appearance; they were spherical, or elongated, or still more commonly consisted of little curved chains of small globules. None of these masses exhibited the least movement, and no doubt were all dead.
Half-minims of the solution were placed on the discs of six leaves; after 23 hrs. one had all its tentacles, two had a few, and the others none inflected; so that the discal glands, when irritated by this salt, do not transmit any strong motor impulse to the outer tentacles. After 48 hrs. the glands on the discs of all six leaves were evidently much injured or quite killed. It is clear that this salt is highly poisonous.*
Acetate of Quinine.—Four leaves were immersed, each in thirty minims of a solution of one part to 437 of water. The solution was tested with litmus paper, and was not acid. After only 10 m. all four leaves were greatly, and after 6 hrs. immensely, inflected. They were then left in water for 60 hrs., but never re-expanded; the glands were white, and the leaves evidently dead. This salt is far more efficient than the sulphate in causing inflection, and, like that salt, is highly poisonous.
Nitrate of Quinine.—Four leaves were immersed, each in thirty minims of a solution of one part to 437 of water. After 6 hrs. there was hardly a trace of inflection; after 22 hrs. three of the leaves were moderately, and the fourth slightly inflected; so that this salt induces, though rather slowly, well-marked inflection. These leaves, on being left in water for 48 hrs., almost
*Binz found several years ago (as stated in ‘The Journal of Anatomy and Phys.’ November 1872, p. 195) that quinia is an energetic poison to low vegetable and animal organisms. Even one part added to 4000 parts of blood arrests the movements of the white corpuscles, which become “rounded and granular.” In the tentacles of Drosera the aggregated masses of protoplasm, which appeared killed by the quinine, likewise presented a granular appearance. A similar appearance is caused by very hot water. [page 203]