Now in my first experiments with bits of meat placed on one side of the disc, it so happened that not a single tentacle was inflected on the opposite side; and when I saw that the vessels on the same side were all connected together by the two inosculations, whilst not a vessel passed over to the opposite side, it seemed probable that the motor impulse was conducted exclusively along them.
In order to test this view, I divided transversely with the point of a lancet the central trunks of four leaves, just beneath the main bifurcation; and two days afterwards placed rather large bits of raw meat [page 249] (a most powerful stimulant) near the centre of the disc above the incision—that is, a little towards the apex—with the following results:—
[(1) This leaf proved rather torpid: after 4 hrs. 40 m. (in all cases reckoning from the time when the meat was given) the tentacles at the distal end were a little inflected, but nowhere else; they remained so for three days, and re-expanded on the fourth day. The leaf was then dissected, and the trunk, as well as the two sublateral branches, were found divided.
(2) After 4 hrs. 30 m. many of the tentacles at the distal end were well inflected. Next day the blade and all the tentacles at this end were strongly inflected, and were separated by a distinct transverse line from the basal half of the leaf, which was not in the least affected. On the third day, however, some of the short tentacles on the disc near the base were very slightly inflected. The incision was found on dissection to extend across the leaf as in the last case.
(3) After 4 hrs. 30 m. strong inflection of the tentacles at the distal end, which during the next two days never extended in the least to the basal end. The incision as before.
(4) This leaf was not observed until 15 hrs. had elapsed, and then all the tentacles, except the extreme marginal ones, were found equally well inflected all round the leaf. On careful examination the spiral vessels of the central trunk were certainly divided; but the incision on one side had not passed through the fibrous tissue surrounding these vessels, though it had passed through the tissue on the other side.*]
The appearance presented by the leaves (2) and (3) was very curious, and might be aptly compared with that of a man with his backbone broken and lower extremities paralysed. Excepting that the line between the two halves was here transverse instead of longitudinal, these leaves were in the same state as some of those in the former experiments, with bits of meat placed on one side of the disc. The case of leaf (4)
* M. Ziegler made similar experiments by cutting the spiral vessels of Drosera intermedia(‘Comptes rendus,’ 1874, p. 1417), but arrived at conclusions widely different from mine. [page 250]
proves that the spiral vessels of the central trunk may be divided, and yet the motor impulse be transmitted from the distal to the basal end; and this led me at first to suppose that the motor force was sent through the closely surrounding fibrous tissue; and that if one half of this tissue was left undivided, it sufficed for complete transmission. But opposed to this conclusion is the fact that no vessels pass directly from one side of the leaf to the other, and yet, as we have seen, if a rather large bit of meat is placed on one side, the motor impulse is sent, though slowly and imperfectly, in a transverse direction across the whole breadth of the leaf. Nor can this latter fact be accounted for by supposing that the transmission is effected through the two inosculations, or through the circumferential zigzag line of union, for had this been the case, the exterior tentacles on the opposite side of the disc would have been affected before the more central ones, which never occurred. We have also seen that the extreme marginal tentacles appear to have no power to transmit an impulse to the adjoining tentacles; yet the little bundle of vessels which enters each marginal tentacle sends off a minute branch to those on both sides, and this I have not observed in any other tentacles; so that the marginal ones are more closely connected together by spiral vessels than are the others, and yet have much less power of communicating a motor impulse to one another.
But besides these several facts and arguments we have conclusive evidence that the motor impulse is not sent, at least exclusively, through the spiral vessels, or through the tissue immediately surrounding them. We know that if a bit of meat is placed on a gland (the immediately adjoining ones having been removed) on any part of the disc, all the short sur- [page 251] rounding tentacles bend almost simultaneously with great precision towards it. Now there are tentacles on the disc, for instance near the extremities of the sublateral bundles (fig. 11), which are supplied with vessels that do not come into contact with the branches that enter the surrounding tentacles, except by a very long and extremely circuitous course. Nevertheless, if a bit of meat is placed on the gland of a tentacle of this kind, all the surrounding ones are inflected towards it with great precision. It is, of course, possible that an impulse might be sent through a long and circuitous course, but it is obviously impossible that the direction of the movement could be thus communicated, so that all the surrounding tentacles should bend precisely to the point of excitement. The impulse no doubt is transmitted in straight radiating lines from the excited gland to the surrounding tentacles; it cannot, therefore, be sent along the fibro-vascular bundles. The effect of cutting the central vessels, in the above cases, in preventing the transmission of the motor impulse from the distal to the basal end of a leaf, may be attributed to a considerable space of the cellular tissue having been divided. We shall hereafter see, when we treat of Dionaea, that this same conclusion, namely that the motor impulse is not transmitted by the fibro-vascular bundles, is plainly confirmed; and Prof. Cohn has come to the same conclusion with respect to Aldrovanda—both members of the Droseraceae.