Prosperous Hill is a great, black, precipitous mountain, situated two miles and a half south of the Barn, and composed, like it, of basaltic strata. These rest, in one part, on the brown-coloured, porphyritic beds of the basal series, and in another part, on a fissured mass of highly scoriaceous and amygdaloidal rock, which seems to have formed a small point of eruption beneath the sea, contemporaneously with the basal series. Prosperous Hill, like the Barn, is traversed by many dikes, of which the greater number range north and south, and its strata dip, at an angle of about 20 degrees, rather obliquely from the island towards the sea. The space between Prosperous Hill and the Barn, as represented in Figure 9, consists of lofty cliffs, composed of the lavas of the upper or feldspathic series, which rest, though unconformably, on the basal submarine strata, as we have seen that they do at Flagstaff Hill. Differently, however, from in that hill, these upper strata are nearly horizontal, gently rising towards the interior of the island; and they are composed of greenish-black, or more commonly, pale brown, compact lavas, instead of softened and highly coloured matter. These brown-coloured, compact lavas, consist almost entirely of small glimmering scales, or of minute acicular crystals, of feldspar, placed close by the side of each other, and abounding with minute black specks, apparently of hornblende. The basaltic strata of Prosperous Hill project only a little above the level of the gently-sloping, feldspathic streams, which wind round and abut against their upturned edges. The inclination of the basaltic strata seems to be too great to have been caused by their having flowed down a slope, and they must have been tilted into their present position before the eruption of the feldspathic streams.
BASALTIC RING.
Proceeding round the Island, the lavas of the upper series, southward of Prosperous Hill, overhang the sea in lofty precipices. Further on, the headland, called Great Stony-top, is composed, as I believe, of basalt; as is Long Range Point, on the inland side of which the coloured beds abut. On the southern side of the island, we see the basaltic strata of the South Barn, dipping obliquely seaward at a considerable angle; this headland, also, stands a little above the level of the more modern, feldspathic lavas. Further on, a large space of coast, on each side of Sandy Bay, has been much denuded, and there seems to be left only the basal wreck of the great, central crater. The basaltic strata reappear, with their seaward dip, at the foot of the hill, called Man-and-Horse; and thence they are continued along the whole north-western coast to Sugar-Loaf Hill, situated near to the Flagstaff; and they everywhere have the same seaward inclination, and rest, in some parts at least, on the lavas of the basal series. We thus see that the circumference of the island is formed by a much-broken ring, or rather, a horse-shoe, of basalt, open to the south, and interrupted on the eastern side by many wide breaches. The breadth of this marginal fringe on the north-western side, where alone it is at all perfect, appears to vary from a mile to a mile and a half. The basaltic strata, as well as those of the subjacent basal series, dip, with a moderate inclination, where they have not been subsequently disturbed, towards the sea. The more broken state of the basaltic ring round the eastern half, compared with the western half of the island, is evidently due to the much greater denuding power of the waves on the eastern or windward side, as is shown by the greater height of the cliffs on that side, than to leeward. Whether the margin of basalt was breached, before or after the eruption of the lavas of the upper series, is doubtful; but as separate portions of the basaltic ring appear to have been tilted before that event, and from other reasons, it is more probable, that some at least of the breaches were first formed. Reconstructing in imagination, as far as is possible, the ring of basalt, the internal space or hollow, which has since been filled up with the matter erupted from the great central crater, appears to have been of an oval figure, eight or nine miles in length by about four miles in breadth, and with its axis directed in a N.E. and S W. line, coincident with the present longest axis of the island.
THE CENTRAL CURVED RIDGE.
This ridge consists, as before remarked, of grey feldspathic lavas, and of red, brecciated, argillaceous tuffs, like the beds of the upper coloured series. The grey lavas contain numerous, minute, black, easily fusible specks; and but very few large crystals of feldspar. They are generally much softened; with the exception of this character, and of being in many parts highly cellular, they are quite similar to those great sheets of lava which overhang the coast at Prosperous Bay. Considerable intervals of time appear to have elapsed, judging from the marks of denudation, between the formation of the successive beds, of which this ridge is composed. On the steep northern slope, I observed in several sections a much worn undulating surface of red tuff, covered by grey, decomposed, feldspathic lavas, with only a thin earthy layer interposed between them. In an adjoining part, I noticed a trap-dike, four feet wide, cut off and covered up by the feldspathic lava, as is represented in Figure 9. The ridge ends on the eastern side in a hook, which is not represented clearly enough in any map which I have seen; towards the western end, it gradually slopes down and divides into several subordinate ridges. The best defined portion between Diana’s Peak and Nest Lodge, which supports the highest pinnacles in the island varying from 2,000 to 2,700 feet, is rather less than three miles long in a straight line. Throughout this space the ridge has a uniform appearance and structure; its curvature resembles that of the coast-line of a great bay, being made up of many smaller curves, all open to the south. The northern and outer side is supported by narrow ridges or buttresses, which slope down to the adjoining country. The inside is much steeper, and is almost precipitous; it is formed of the basset edges of the strata, which gently decline outwards. Along some parts of the inner side, a little way beneath the summit, a flat ledge extends, which imitates in outline the smaller curvatures of the crest. Ledges of this kind occur not unfrequently within volcanic craters, and their formation seems to be due to the sinking down of a level sheet of hardened lava, the edges of which remain (like the ice round a pool, from which the water has been drained) adhering to the sides. (A most remarkable instance of this structure is described in Ellis “Polynesian Researches” second edition where an admirable drawing is given of the successive ledges or terraces, on the borders of the immense crater at Hawaii, in the Sandwich Islands.)
(FIGURE 10. DIKE. (Section showing layers 1, 2 and 3 from top to bottom.)
1. Grey feldspathic lava.
2. A layer, one inch in thickness, of a reddish earthy matter.
3. Brecciated, red, argillaceous tuff.)
In some parts, the ridge is surmounted by a wall or parapet, perpendicular on both sides. Near Diana’s Peak this wall is extremely narrow. At the Galapagos Archipelago I observed parapets, having a quite similar structure and appearance, surmounting several of the craters; one, which I more particularly examined, was composed of glossy, red scoriae firmly cemented together; being externally perpendicular, and extending round nearly the whole circumference of the crater, it rendered it almost inaccessible. The Peak of Teneriffe and Cotopaxi, according to Humboldt, are similarly constructed; he states that “at their summits a circular wall surrounds the crater, which wall, at a distance, has the appearance of a small cylinder placed on a truncated cone. (“Personal Narrative” volume 1 page 171.) On Cotopaxi this peculiar structure is visible to the naked eye at more than two thousand toises’ distance; and no person has ever reached its crater. (Humboldt “Picturesque Atlas” folio plate 10.) On the Peak of Teneriffe, the parapet is so high, that it would be impossible to reach the caldera, if on the eastern side there did not exist a breach.” The origin of these circular parapets is probably due to the heat or vapours from the crater, penetrating and hardening the sides to a nearly equal depth, and afterwards to the mountain being slowly acted on by the weather, which would leave the hardened part, projecting in the form of a cylinder or circular parapet.