At its southern end, as mapped in Fig. 76, there is no perceptible throw at the surface, but various marks of violence are manifested in the fissuring of the hillside and the snapping of small trees. About a quarter of a mile from this point, the fault crosses a tributary stream, where the throw amounts to two feet, and the same distance farther on it meets the Chedrang river, the bed of which it crosses many times in its short course.

Fig. 76.—Plan of Chedrang fault. (Oldham.)[ToList]

Mr. Oldham describes the fault in detail, as observed by him in February 1898. Here, it will be sufficient to refer to its more important features, and to its effects on the superficial drainage of the district. At the spot marked a (Fig. 76) the river, after running on the west or down-throw side of the fault for nearly half a mile, meets the scarp, and is ponded back by it for about a quarter of a mile upstream. For the next half-mile, the river keeps to the upthrow side of the fault, the scarp of which blocks the tributary streams from the west, forming a number of small pools. At the last of these, the total throw is not less than 25 feet. A little farther on, the fault crosses the Chedrang and causes the waterfall at b, the height of which, owing to the fall of dislodged fragments, does not exceed nine feet. The fault then runs along the old and now dry bed of the river, while the stream itself flows in a depression on the down-throw side. About a quarter of a mile below the waterfall, the fault crosses the river, and soon after enters a large sheet of water at c, half a mile long, from 300 to 400 yards wide, and with a maximum depth of 18 feet. At first, the pool spreads on both sides of the fault, but the inequalities due to the scarp are evidenced by soundings. At the point where the fault leaves the pool, its throw is reduced to nothing, and it is just here that the water attains its greatest depth. To the north the throw increases rather rapidly, to 25 feet in a quarter of a mile. But the peculiarity of this pool is that it is not, like the others mentioned above, dammed back by the fault-scarp. There is no barrier at its northern end, where the river escapes, except that formed by the gradually increasing throw of the fault. The pool is simply due to the reversal of the natural slope of the river-bed, caused by the formation of a roll or undulation in the ground on the upthrow side of the fault. Its recent origin is evident from the number of dead trees and bamboo clumps still standing in the water.

For a mile after the fault leaves the pool, its throw varies considerably. It rises, as already mentioned, from zero to 25 feet. A little farther on, the fault runs up the side of a spur, the throw increasing to 31 feet; and, in this part, the violence of the shock was shown by the dislodgment of blocks of granite as much as 20 feet in diameter, and by the overthrow or destruction of many trees. After crossing the spur, the fault returns to the neighbourhood of the river, and crosses its bed four times, forming pools (e, g) or waterfalls (d, f) according as the scarp occurs on the downstream or upstream side. The throw of the fault then changes considerably within little more than half a mile, from 18 feet to zero and again to 20 feet, the undulation so formed producing a large pool (h) entirely on the upthrow side of the fault.

At the point marked i on the map, the river once more crosses the fault; but the bottom of the valley is filled with alluvium, and, instead of a waterfall, a large sandy delta spreads down the stream. The scarp is, however, readily traced on the east side of the river, a throw of 32 feet being measured. After this, the alluvium becomes of considerable thickness, and the continuation of the fault is marked by a short slope, which tilts over the trees when it traverses forest-land. Leaving the valley of the Chedrang, the fault crosses an open plain, and is followed with some difficulty to the neighbourhood of Jhira, where, owing to the thick bed of alluvium, it forms a gentle roll or undulation of the surface, crossing the main channel of the Krishnai to the north-east of Jhira. On the west side of this barrier a large sheet of water, a mile and a half in length, three-quarters of a mile wide, and 12 feet in depth, gathered over the village of Jhira. "On the east side of the Jhira lake," says Mr. Oldham, "there is ample evidence of change of level, for part of the dry land was formerly ... perpetually under water, and at one place the remains of an old irrigation channel can be seen.... At the northern end of the lake the drainage now makes its escape in a broad and shallow sheet of water over what was once high land covered with sal forest."

This is the last marked feature due to the Chedrang fault. Beyond the north of Jhira the throw rapidly diminishes, and perhaps dies out altogether before reaching the low hills lying to the north of that village.

In several ways, this fault-scarp differs from that formed with the Japanese earthquake of 1891. Throughout its course the down-throw, wherever it is perceptible, is invariably to the west; in no place could any trace of horizontal shifting be detected; and the plane of the fault, when it traversed rock, is practically vertical.

Whether the scarp was formed by the elevation of the rock to the east of the fault, or by the depression of that to the west, or by both such movements at once, there is no decisive evidence; but there are very good reasons for believing the first alternative to be the true one. The undulations in the ground which gave rise to the large pools at c and h (Fig. 76) occur on the east side of the fault. Also, between the outlet of the lake at Jhira and the point where the Krishnai rejoins its original channel, the gradient of the river approaches that of a mountain stream, although the new bed consists of alluvium, and not of rock. Now, the alluvial plain of this district is raised so slightly above the sea-level that no subsidence great enough to have caused the existing gradient could have occurred without the depressed area being flooded with water. Though some movements may have taken place on the west side of the fault, it seems clear, then, that elevation of the rock on the east side was the predominant, if not the sole, cause of the fault-scarp.