MINOR SHOCKS.

A great earthquake rarely, if ever, occurs without some preparation in the form of a marked increase of seismic activity. Perrey records several shocks during the two years 1856-57 that were felt at places as far apart as Naples, Melfi, and Cosenza. On December 7th, 1857, a slight shock, with a report from beneath like the explosion of a mine, was felt at Potenza. Then came the great earthquake on December 16th, at about 10 P.M.

This was followed by numerous after-shocks—how numerous it is impossible to say, for the records are of the scantiest description. For some hours the ground within the meizoseismal area is said to have trembled almost incessantly. At Potenza many slight shocks, both vertical and horizontal, were felt during the night, and for a month or more they were so frequent as to render enumeration difficult. Mallet's last record is dated March 23rd, 1858, when four slight shocks were felt at La Sala and Potenza, but occasional tremors were reported to him until May 1859.

The most important of all these after-shocks was one felt about an hour after the principal earthquake. Everywhere far less powerful, it was yet strong enough to shake down many buildings at Polla that had been shattered by the great shock. Towards the south at Moliterno, and towards the north at Oliveto and Barielle, it evidently attracted very little attention. So far as can be judged from the evidence given by Mallet, the disturbed area seems to have been approximately of the same form and dimensions as the meizoseismal area, and elongated in the same direction, but concentric with the north-west focus.

On the other hand, if we may rely on too brief evidence, several after-shocks recorded only at Montemurro, Saponara, Viggiano, or Lagonegro, were probably connected with the south-east or Montemurro focus.

ORIGIN OF THE EARTHQUAKE.

Mallet's theories have suffered perhaps more than any other part of his work from the recent growth of our knowledge. From a historical point of view, some reference to his explanation of the origin of the Neapolitan earthquake seems desirable, and his own conscientious work demands it. On the other hand, his conclusions are, for the present at any rate, superseded, and it will therefore be sufficient to describe them briefly.

Most of the wave-paths, as we have seen, pass within three miles of a point almost coincident with the village of Caggiano. Of the remainder, six traverse a spot about two miles farther to the south-west, and three cross another about two miles farther to the north-east. Neglecting other points of intersection, but taking account of the observed emergences at Vietri di Potenza, Auletta, Polla, etc., Mallet infers that the horizontal section of the focus was a curve (indicated by the dotted line in Fig. 9) not less than ten miles in length, and passing from near Balvano on the north, close to Vietri di Potenza, Caggiano, and Pertosa, to a point about two and a half miles west of Polla. Again, he remarks, the observed emergences at places near the epicentre indicate that the vertical section of the seismic focus was either more or less curved, or more probably a surface inclined towards the south-east. He concludes, therefore, that the seismic focus was a curved fissure, 10 miles long and 3½ miles in height, and with its centre at a depth of 6½ miles below the level of the sea.

The production of this great fissure, accompanied, perhaps by the injection into it of steam at high pressure, was regarded by Mallet as the cause of the principal earthquake. He imagines that the rent would start at or near the central point of the focus and then extend rapidly outwards in all directions. In the initial stage, vibrations of very small amplitude would alone be transmitted, and these would give rise to the early sounds and tremors. As the rending proceeded, the vibrations would increase in strength up to a certain point when they produced the shock itself. After this, they would decrease; and, in the final stage, would give place to the small vibrations corresponding to the sounds and tremors that marked the close of the earthquake.

The rush of steam at high pressure into the focus Mallet does not seem to have considered essential, though he evidently regarded it as possible, indeed probable; and he suggests that it may have been in part the cause of the earthquake which occurred an hour later. Though feeling sceptical as to the existence of any general law of increase of underground temperature, he assumes it, for the sake of illustration, to be 1° F. for every 60 feet of descent. This would give a temperature of 339° F. at the upper limit of the focus, 643° F. at its central point, and 884° F. at its lower margin. If the focus were filled with steam at each of these temperatures, the corresponding pressures on its walls would be 8, 149, and 684 atmospheres, respectively. As the steam may be supposed to be admitted suddenly and to be unlimited in supply, Mallet infers that it might exist at the tension due to the highest of these temperatures, in which case it would be capable of lifting a column of limestone 8,550 feet in height (or about one-half the depth of the upper margin of the focus), and would exert a pressure on the walls of the focus of 4.58 tons per square inch, or of more than 640,528 millions of tons upon its whole surface.