Fig. 58.—Distribution of Audible After-shocks in Space (November 1891-December 1892). (Davison.)[ToList]
The explanation of these peculiarities is no doubt connected with the comparative inability of the Japanese people to perceive the deep sounds which in Europe are always heard with earthquake shocks. The sounds are rarely heard by them more than a few miles from the epicentre.[60] We may therefore conclude that slight after-shocks originated nearer the surface than strong ones, that the mean depth of the foci decreased with the lapse of time, and that the axes of the systems of curves in Fig. 58 mark out approximately the lines of the growing faults. The separation of the two westerly groups of curves appears to show that the main branch of the meizoseismal area is connected with a fault roughly parallel to that traced by Professor Koto, but of which no scarp (if it existed) could be readily distinguished among the superficial fissures produced by the great shock.
EFFECT OF THE EARTHQUAKE ON THE SEISMIC ACTIVITY OF THE ADJOINING DISTRICTS.
So great and sudden a displacement as occurred along the fault-scarp could hardly take place without affecting the stability of adjoining regions of the earth's crust, and we should naturally expect to find a distinct change in their seismic activity shortly after October 28th. In Fig. 59 two such regions are shown, bounded by the straight dotted lines. The district in which the principal earthquake and its after-shocks originated is enclosed within the undulating dotted lines. The continuous lines inside all three districts are the curves corresponding to 10 and 5 epicentres for the years 1885-92. Not far from the axes of the outer groups of curves there are probably transverse faults, approximately parallel to the great fault-scarp and the main branch of the meizoseismal band, and distant from them about 45 and 55 miles respectively.
Fig. 59.—Map of Adjoining Regions in which Seismic Activity was affected by the Great Earthquake. (Davison.)[ToList]
In the district represented in the north-east corner of Fig. 59, 29 earthquakes originated between January 1st, 1885, and October 27th, 1891, and 30 between October 28th, 1891, and December 31st, 1892, 7 of the latter number occurring in November 1891. In the south-west district, the corresponding figures before and after the earthquake are 20 and 36, 8 of the latter occurring in November 1891. Thus, in the north-east district, for every shock in the interval before the earthquake there were six in an equal time afterwards, and at the rate of 10 during November 1891; and in the south-west district, for every shock before the earthquake there were 10 afterwards, and at the rate of 16 during November 1891.
Now, it is unlikely that the gradual increase of stress should be so nearly proportioned everywhere to the prevailing conditions of resistance as to give rise to a marked and practically simultaneous change in seismic activity over a large area; whereas the paroxysmal occurrence of a strong earthquake might alter the surrounding conditions with comparative rapidity, and so induce a state of seismic excitement in the neighbourhood. It therefore seems very probable that the increased activity in the two districts here described was a direct consequence of the occurrence of the great earthquake.