At places near the epicentre, rapid changes in the direction of the shock were observed owing to the large angle subtended by the focus; while, at considerable distances, this angle being small, the changes of direction were imperceptible. A further variation with the distance was an increase in the period of the vibrations. Close to the epicentre, the general impression was that of crossing the wake of a steamer in a very short rowing-boat, or of riding in a carriage without springs. At distances of a hundred miles or more, the movement is described as being of a pleasant, gentle, undulating character, like that felt during the rocking of a ship at anchor or in a carriage with well-appointed springs.
The most remarkable feature of the shock, however, was its division into two distinct parts or series of vibrations, separated by an interval, lasting two or three seconds, of absolute rest and quiet. And this was no mere local phenomenon. With the exception of a narrow band that will be referred to presently, records of the double shock come from nearly all parts of the disturbed area, even from districts so remote as the Isle of Man and the east of Ireland. The two parts differed in intensity, in duration, and in the period of their constituent vibrations. For instance, at Oaklands (near Chard), a shivering motion was first felt, and then, after about three or four seconds, a distinct rocking from side to side. At Exeter, there was a sudden tremor lasting about two seconds, followed, after two or three seconds, by another and more severe shaking lasting four or five seconds. Again, at West Cross (near Swansea), an undulatory movement for about four seconds was followed soon after by a tremulous shock. At Liverpool, the durations of the first part, interval, and second part were respectively estimated at about six, two, and four seconds.
As a first result of the observations, then, it appears that in the south-east half of the disturbed area, the second part of the shock was the stronger, of greater duration and consisted of longer-period vibrations (as at a, Fig. 61); while, in the north-west half, the same features characterised the first part of the shock (b, Fig. 61). A closer examination of the records shows, however, that the boundary between the two portions of the disturbed area was not a straight line, but slightly curved, the concavity facing the south-east. The broken line on the map (Fig. 60), which is hyperbolic in form, represents roughly the position of this curved boundary.[64]
Fig. 61.—Nature of shock of Hereford earthquake.[ToList]
Along this hyperbolic boundary-line, or rather within a narrow band of which it is the central line, the shock lost its double character, and was manifested as a single series of vibrations gradually increasing in intensity and then dying away. Close to the edges of this band, careful observers were able to distinguish two maxima of intensity connected by a continuous series of tremors (c, Fig. 61). Thus, within the band, the two series of vibrations, which elsewhere were isolated, must have been superposed on one another; while, near the edges of the band, the concluding tremors of the first series overlapped the initial tremors of the second.
Origin of the Double Series of Vibrations.—The Hereford earthquake thus belongs to the same class as the Neapolitan, Andalusian, Charleston, and Riviera earthquakes. As in these cases, the hypothesis of a single focus is inadmissible. The division of the disturbed area into two regions of opposite relative intensity, duration, etc., is sufficient proof that a single series of vibrations was not duplicated by reflection or refraction, or by separation into longitudinal and transverse waves. It is equally conclusive against a repetition of the impulse within the same focus. We must therefore infer that the focus consisted of two nearly or quite detached portions arranged along a north-west and south-east line, and that the impulse at the north-west focus was the stronger of the two. The only question that remains to be decided is whether the impulses at the two foci were simultaneous or not.
Now, if the impulses occurred at the same instant, the waves from the two foci would travel with the same velocity, and would therefore coalesce along a straight band which would bisect at right angles the line joining the two epicentres. But we have already seen that this band is curved, and it thus follows that the two impulses were not simultaneous. Again, since the concavity of the hyperbolic band faces the south-east, the waves from the north-west focus must have travelled farther than those from the south-east focus before the two met along the hyperbolic band; in other words, the impulse at the north-west focus must have occurred two or three seconds before the impulse at the other.
Position and Dimensions of the Two Foci.—There can be little doubt that the impulse at the north-west focus was responsible for the greater damage to buildings at Hereford, Dinedor, Fownhope, etc. The centre of its epicentral area must therefore lie about three miles south-east of Hereford. It is probable, also, that the corresponding centre of the other focus is similarly placed with respect to the south-east portion of the isoseismal 8—that is, about two or three miles north-east of Ross. These two points are eight or nine miles apart. Now, since, as we shall see, the mean surface-velocity of the earth-waves was about 3000 feet per second, and the mean duration of the quiet interval between the two series was 3½ seconds, the nearest ends of the two foci must have been separated by a distance of not less than two miles. Moreover, since the series of vibrations from the north-west or Hereford focus lasted a few seconds longer than that from the south-east or Ross focus, the former must have been about two miles longer than the latter, and we may therefore estimate their lengths at about eight and six miles respectively. Including the undisturbed intermediate portion, this would give a total length of focus of about 16 miles, a result we have already inferred from the dimensions of the isoseismal 8.