Fig. 63.—Map of minor shocks of Hereford earthquake. (Davison.)[ToList]
Then came three slight shocks (at about 1 A.M. on December 17th, 1.30 or 1.45 A.M., and 2 A.M.), about which little is known except that they probably originated somewhere near the Ross focus.
The fifth shock (E, Fig. 63) occurred at about 3 A.M., and disturbed an area 104 miles in length, 79 miles in width, and about 6,400 square miles in area. Its boundary occupies approximately the position that would be taken by an isoseismal of intensity between 7 and 6 of the principal earthquake. We may therefore infer that this shock and the principal earthquake were caused by slips along the same fault and in about the same region of the fault. Also, as there is no evidence of discontinuity in the vibrations of the minor shock, it is probable that the focus was continuous, and occupied the space between the two foci of the principal earthquake, as well as part or the whole of both these foci.
The next four shocks occurred at about 3.30, 4, 5, and 5.20 A.M., and were more closely associated with the Ross than with the Hereford focus, and then followed the principal earthquake at 5.32 A.M.
A few minutes later, at 5.40 or 5.45 A.M., a very slight shock was felt, the focus of which was possibly situated in the central region between the two foci. The next, at about 6.15 A.M. (K, Fig. 63), disturbed an area 41 miles long, 27 miles broad, and containing about 870 square miles. Its focus must have coincided approximately with the Ross focus of the principal earthquake, and this was also the case probably with the last shock of all, which occurred on July 19th, 1897, at 3.49 A.M.
ORIGIN OF THE EARTHQUAKES.
The greater part of the epicentral district is covered by a sheet of Old Red Sandstone (Fig. 64), but, just to the north-east of the position laid down for the originating fault (indicated by the straight broken line), is the well-known Woolhope anticlinal, by which Silurian beds are brought to the surface. The anticlinal axis runs approximately north-west and south-east, and is thus roughly parallel to the earthquake-fault. Moreover, the thinning-out and occasional disappearance of some of the Silurian beds on the south-west side of the anticlinal (as compared with those on the north-east side) is suggestive of a north-west and south-east fault or rapid flexure at or near the south-west junction of the Old Red Sandstone and the Silurian strata. If it be a fault, it must hade to the north-east, and would therefore satisfy two of the conditions determined by the seismic evidence. It would lie, however, about two miles too far to the north-east, being in fact to the north-east of the villages which suffered most from the earthquake.