Die Bestimmung der spezifischen und latenten Wärme geschieht mittels des Kalorimeters, einer Vorrichtung mittels deren man diejenige Wärmemenge misst, welche ein Körper von bestimmter Masse bei[4] einer Abkühlung um[1] eine bestimmte Anzahl von Graden hergiebt oder bei[4] einer Erwärmung um[1] eine bestimmte Anzahl von Graden aufnimmt. Dies kann auf drei verschiedene Arten ausgeführt werden, 1. Man bringt den auf eine bestimmte Temperatur erhitzten Körper in eine abgewogene Menge Wasser von niederer Temperatur und ermittelt[8] die Temperatur, welche beide zusammen schliesslich annehmen. 2. Man ermittelt die Menge von Eis, welche der auf eine bestimmte Temperatur erwärmte Körper zu schmelzen vermag.[9] 3. Man bestimmt diejenige Menge von Wasser, welche der Körper in einem Strom von gesättigtem Wasserdampf niederschlägt,[10] während er sich auf die Temperatur des Dampfes erwärmt.

28.

Wärme aus mechanischer Arbeit. Wärme entsteht[1] bei der Reibung und beim unelastischen Stoss der Körper; bei diesen Vorgängen wird mechanische Arbeit verbraucht. Die Versuche haben gelehrt, das zur Erzeugung von 1 cal immer eine ganz bestimmte Arbeitsgrösse[2] von im Mittel[3] 425 mkg nötig ist. Umgekehrt kann sich unter Umständen Wärme wieder in mechanische Arbeit umsetzen, wobei[4] man für je 1/425 cal eine Arbeitsleistung von 1 mkg erhält. Man nennt die Grösse 425 mkg das mechanische Aequivalent der Wärme, während 1/425 cal. das calorische Aequivalent der Arbeit ist.

Beispiele von der Umsetzung von Wärme in mechanische Arbeit findet man in den Heissluftmotoren, bei welchen eine angesaugte und dann durch die Bewegung eines Kolbens verdichtete Luftmenge[5] erhitzt wird und bei der während der Erhitzung stattfindenden Ausdehnung einen zweiten Kolben vorwärts schiebt, welcher mittels Pleuelstange[6] und Kurbel[7] eine Welle[8] mit Schwungrad[9] in Bewegung setzt und so die von der erhitzten, sich ausdehnenden Luft abgegebene Arbeit an letztere abgiebt. Die Luftmenge kann dabei[10] bei[11] jedem Hub neu aufgesaugt werden (Ericson), oder die Maschine kann immer mit demselben Luftquantum arbeiten (Lehmann). Diese Maschinen müssen infolge der Schwierigkeit, die Wärme rasch der Luft zuzuführen, mit hohen Temperaturen der Heizflächen und darum ungünstig arbeiten. Günstiger ist daher der Motor von Hock, bei welchem die Arbeitsluft durch den Heizraum hindurchgeführt wird.

Diese Maschinen bilden bis zu einem gewissen Grade den Uebergang[12] zu den weit vollkommeneren Gaskraftmaschinen, bei welchen ein explosives Gemisch von Luft und Leucht- oder Heizgas angesaugt, zusammengedrückt und dann entzündet wird. Das durch die rasche Verbrennung auf sehr hohen Druck gebrachte Gemenge von Stickstoff und den Verbrennungsprodukten des Gases treibt alsdann den Kolben wieder vorwärts und giebt dabei[13] an denselben Arbeit ab, welche auf eine Welle mit Schwungrad übertragen wird. Beim Rückgang des Kolbens werden die infolge der Ausdehnung stark abgekühlten Verbrennungsgase in die Luft hinausgetrieben. Dann wird wieder Gemisch angesaugt, komprimiert, entzündet etc., d. h. bei je zwei Hin- und Hergängen des Kolbens wird nur während eines Kolbenhubs[14] Arbeit geleistet (Viertaktmotor von Otto). Die Gaskraftmaschinen setzen[15] jetzt bis über 30 Prozent der gesammten bei der Verbrennung des Gases entstehenden Wärme in mechanische Arbeit um.

29.

Aehnlich ist die Wirkung der Dampfmaschine, bei welcher der in einem Dampfkessel erzeugte, hochgespannte und dann mehr oder weniger überhitzte Dampf ebenfalls in einen Zylinder[1] mit Kolben tritt und diesen vorwärts schiebt. Um die im Dampf enthaltene Energie möglichst auszunutzen, sperrt[2] die sogenannte Steuervorrichtung[3] den Zutritt des frischen Dampfes aus dem Kessel nach etwa 1/10 bis 1/3 des Kolbenweges ab, und der Dampf dehnt sich dann weiter nahezu adiabatisch unter Abkühlung und Abnahme des Druckes aus, wobei[4] ihm aber durch Heizung der Zylinderwände etwas Wärme zugeführt werden muss, wenn keine Verdichtung eintreten soll. Der bis nahezu Atmosphärendruck ausgedehnte Dampf tritt dann entweder in die Luft aus oder er tritt in einen sogenannten Kondensator, worin er durch Abkühlung der Wandungen oder durch eingespritztes Wasser verdichtet wird. Hierbei[4] entsteht ein bis etwa 65 cm Quecksilbersäule niedrigerer[5] Druck, als der Atmosphärendruck beträgt; der auf Atmosphärendruck expandierte Dampf kann sich also noch weiter ausdehnen und dabei[4] Arbeit abgeben. Wegen der bei letzteren Maschinen notwendigen Pumpe zum Fortschaffen des Kondenswassers aus dem Kondensator geht[6] hierbei ein Teil Arbeit wieder verloren, der bei kleinen Maschinen grösser ausfallen[7] kann als der durch die Verdichtung erzielte Gewinn.

Beträgt der Ueberdruck des Kesseldampfes nicht mehr als 6 Atm., so genügt für die Ausdehnung ein Zylinder. Bei 8 bis 10 Atm. Kesselüberdruck ist es aber vorteilhafter, die Expansion stufenweise auf 2 Zylinder, den Hochdruckzylinder mit kleinerem und den Niederdruckzylinder mit grösserem Durchmesser zu verteilen, während man für noch höheren Dampfdruck (12 bis 17 Atm.) die Expansion auf 3 und sogar 4 Zylinder verteilt. Da selbst in dem bei niederer Temperatur verdichteten Dampf noch sehr grosse Wärmemengen enthalten sind, hat man in neuester Zeit versucht, die Wärmeausnutzung der Dampfmaschine noch vollkommener zu gestalten, indem man[8] den Kondensator einer Wasserdampfmaschine als Heizapparat für einen mit Aether oder flüssiger schwefliger Säure gefüllten zweiten Dampfkessel verwendete und mittels der schon bei niederer Temperatur hoch gespannten Dämpfe dieser Flüssigkeiten eine zweite mit der ersten mechanisch gekuppelte Dampfmaschine antrieb. Auf diese Weise hat man den Wirkungsgrad[9] der Dampfmaschine, der bei der Wasserdampfmaschine zusammen mit dem Kessel bis etwa 12 Prozent erreicht, auf 17 Prozent zu steigern vermocht. Aehnliche Vorteile hat man durch sehr starke Ueberhitzung des Dampfes erreicht.

Bei den modernen Dampfturbinen, welche jetzt so weit vervollkommnet sind, dass ihr Wirkungsgrad denjenigen der Zweifachexpansionsmaschinen erreicht, lässt man den Dampf, ähnlich dem Wasser bei den Wasserturbinen, ausströmen und die mit grosser Geschwindigkeit austretenden Dampfstrahlen[10] auf ein Schaufelrad[11] drücken. Wegen der grossen Ausflussgeschwindigkeit des Dampfes muss auch, um einen günstigen Wirkungsgrad zu erzielen, die Umfangsgeschwindigkeit des Schaufelrads sehr hoch sein.

30.