Die bei dieser Reaktion entstehende Wärme ist genügend, um den Röstprozess ohne besondere Feuerung zu unterhalten. Die zum grössten Teil aus schwefliger Säure bestehenden Röstgase werden in Bleikammern mit Wasserdampf und Salpetersäure zusammengebracht, wobei man dafür sorgt[6], dass gleichzeitig immer frische Luft zutreten kann und dass im Innern der Kammern eine Temperatur von ungefähr 40° herrscht. Während nun die schweflige Säure durch die Bleikammern strömt und gleichzeitig mit Luft und den Dämpfen der Salpetersäure bei Vorhandensein[7] von Wasser in Berührung kommt, wird sie durch den Sauerstoff der Salpetersäure zu Schwefelsäure oxydiert, während sich die Salpetersäure zu Stickstoffdioxyd (Untersalpetersäure[8]) reduziert. Sobald aber letzteres mit den vorhandenen Wasserdämpfen in Berührung kommt, zerfällt[9] es zu Salpetersäure, die von neuem eine entsprechende Menge von schwefliger Säure zu Schwefelsäure oxydiert, und zu Stickstoffoxyd, das unter Aufnahme von Sauerstoff aus der in der Kammer vorhandenen Luft von neuem in Stickstoffdioxyd übergeht[10], so dass also eine kleine Menge Salpetersäure genügt, um grosse Mengen von schwefliger Säure in Schwefelsäure überzuführen[11].
Die Schwefelsäure des Handels, zuweilen auch englische Schwefelsäure oder Vitriolöl genannt, ist eine farblose, durchsichtige, geruchlose Flüssigkeit von 1,83 Dichte und einem Gehalt von 98 Prozent Schwefelsäure neben 2 Prozent Wasser; oder im reinsten, konzentriertesten Zustande von 1,854 Dichte. Sie besitzt einen brennend scharfen, ätzenden, oder, wenn mit viel Wasser verdünnt, rein sauren Geschmack, siedet bei 338° oder wenn ihre Dichte nur 1,83 bei 326°. Auf die meisten organischen Substanzen wirkt sie zerstörend ein, verkohlt z. B. Holz, Stärke, Zucker, löst Haut und Leder auf und wirkt daher innerlich genossen[12], im konzentrierten Zustande als ätzendes, heftiges Gift. Will man Schwefelsäure verdünnen, so muss die Säure langsam und unter Umrühren in das Wasser gegossen werden. Giesst man unvorsichtigerweise wenig Wasser zu Schwefelsäure, so entsteht oft heftiges Spritzen der Flüssigkeit, wodurch man leicht beschädigt werden könnte. Je mehr man die Säure mit Wasser verdünnt, desto niedriger wird ihre Dichte. Man muss die Schwefelsäure in gut mit Glasstöpsel verschlossenen Flaschen aufbewahren, da sie sonst, die Feuchtigkeit aus der Luft anziehend, allmählig verdünnter wird.
51.
Mit den Metalloxyden setzt sich die Schwefelsäure unter meist sehr heftiger Einwirkung[1] zu schwefelsauren Salzen, Sulfaten oder Vitriolen um, von welchen sich viele oft massenhaft in der Natur finden; so z. B. das Kaliumsulfat oder das schwefelsaure Kali, das Natriumsulfat oder das schwefelsaure Natron (Glaubersalz), das Bariumsulfat oder der schwefelsaure Baryt (Schwerspat), das Strontiumsulfat oder der schwefelsaure Strontian (Cölestin), das Calciumsulfat oder der schwefelsaure Kalk[2] (Gips, Anhydrid), das Magnesiumsulfat oder die schwefelsaure Magnesia (Bittersalz[3]), das Bleisulfat oder das schwefelsaure Bleioxyd (Bleivitriol) und viele andere. Die Schwefelsäure ist eine der unentbehrlichsten chemischen Verbindungen und wird bei chemischen Operationen massenhaft[4] und zu den verschiedensten Zwecken gebraucht. Ausser der englischen Schwefelsäure, welche man auch nur kurzweg als Schwefelsäure bezeichnet, erhält man im Handel noch die sogen. Nordhäuser- oder rauchende Schwefelsäure, rauchendes Vitriolöl, neuerdings Oleum genannt, eine bräunliche, ölige, äusserst ätzende, an der Luft weisse, stechend saure Dämpfe ausstossende Flüssigkeit von 1,88 bis 1,93 Dichte, die eine Mischung der gewöhnlichen Schwefelsäure mit Schwefelsäureanhydrid ist. Dieses Oleum findet in der chemischen Technik[5] eine immer steigende Verwendung, z. B. in der Farbenfabrikation, zur Lösung des Indigos, zur Reinigung gewisser Mineralöle etc. Wird das Oleum auf 80° erwärmt, so destilliert Schwefelsäureanhydrid ab, das auf diese Weise leicht in geringen Mengen dargestellt werden kann.
Natron. Was man im Handel Natron oder Aetznatron[6] nennt, ist stets Natriumhydroxyd oder Natronhydrat NaOH. Es wird im kleinen[7] dargestellt, indem man[8] zu einer siedenden Lösung von 4 Teilen krystallisierter Soda in 24 Teilen Wasser allmählig und unter Umrühren einen aus 1-1/2 Teilen gebranntem Kalk und 4 Teilen Wasser bereiteten Kalkbrei[9] hinzufügt und so lange kocht, bis eine herausgenommene filtrierte Probe beim Versetzen[10] mit verdünnter Salzsäure nicht mehr aufbraust. Der Kessel, in welchem diese Zersetzung vorgenommen wird, wird hierauf bedeckt, und nachdem sich das gebildete Calciumkarbonat zu Boden gesetzt hat, zieht man mit einem Heber die klare Natronhydratlösung, die sogen. ätzende Lauge, Seifensiederlauge, Aetznatronlauge, Natronlauge ab und dampft[11] sie in eisernen Kesseln oder silbernen Schalen[12] so weit ein, bis ein Tropfen der Flüssigkeit auf einer kalten Glastafel sogleich erstarrt. Im grossen[13] gewinnt man zur Zeit das Natriumhydroxyd hauptsächlich auf elektrolytischem Wege. Das Aetznatron ist eine weisse, undurchsichtige, faserige oder körnige Masse von 2,13 Dichte. In der Rotglühhitze schmilzt es zur farblosen Flüssigkeit; in der Weissglühhitze ist es flüchtig. Es zieht aus der Luft mit Begierde[14] Feuchtigkeit und Kohlensäure an, löst sich im Wasser unter Erhitzung in fast jedem Verhältnisse auf, wirkt äusserst ätzend (zerstörend) auf organische, namentlich tierische Substanzen ein. Seine wässerige Lösung, die Natronlauge, benutzt man zur Seifenfabrikation, zum Bleichen, Reinigen und Waschen von Stoffen und in der Chemie zur Darstellung vieler chemischer Präparate oder Einleitung[15] chemischer Zersetzungen.
Die Natronsalze sind mit Ausnahme des Natriumantimonats, antimonsauren Natrons, in Wasser sämtlich[16] löslich und meistens aus ihren Lösungen leicht krystallisierbar. Sie zeichnen sich dadurch aus[17], dass sie, mit Salzsäure befeuchtet und mit Weingeist übergossen, wenn dieser entzündet wird, der Flamme eine lebhafte gelbe Farbe erteilen.
52.
Soda. Das neutrale kohlensaure Natron Na2CO3 + 10 H2O ist eines der wichtigsten Salze und wird daher im grossartigsten Massstabe[1] fabriziert. Am häufigsten benutzt man zu seiner Fabrikation das Kochsalz. Zu diesem Behufe wird nach dem Verfahren von Leblanc das Kochsalz zunächst durch Erhitzen mit Schwefelsäure zersetzt und in Glaubersalz übergeführt. Diese Erhitzung findet in besonderen Oefen statt, die so konstruirt sind, dass alles[2] bei der Zersetzung des Kochsalzes durch die Schwefelsäure frei werdende Chlorwasserstoffgas behufs[3] seiner Verdichtung durch Wasser und Ueberführung in verkäufliche Salzsäure abgeleitet werden kann. Zuletzt wird das entstandene Glaubersalz bis zum Glühen erhitzt und dann in den Sodaschmelzöfen mit ungefähr seinem gleichen Gewicht von Calciumkarbonat und zwei Dritteilen Anthracit oder Steinkohle unter fortwährendem Durcharbeiten der Masse bis zum Schmelzen erhitzt, wobei zunächst infolge der reduzierenden Einwirkung des Kohlenstoffs das Glaubersalz zu Schwefelnatrium reduziert wird, welches sich mit dem Calciumkarbonat zu Natriumkarbonat (Soda) und zu Calciumoxysulfid umsetzt.[4] Aus der geschmolzenen Masse wird durch Wasser das Natriumkarbonat ausgezogen und durch Verdunsten dieser Auflösung in Krystallen bereitet[5], muss aber dann durch nochmaliges[6] Umkrystallisieren weiter gereinigt werden.
Nach dem seit 1870 im grossen zur Anwendung gekommenen Verfahren[7] von Solvay, löst man in konzentriertem, aus Gaswasser dargestelltem Aetzammoniak Kochsalz auf und leitet in diese Lösung unter einem Drucke von 2 Atmosphären Kohlensäuregas, wobei sich Natriumdikarbonat bildet, das herauskrystallisiert, während Salmiak[8] in Lösung bleibt. Durch Erhitzen wird das Natriumdikarbonat in Soda übergeführt und die dabei entweichende Kohlensäure wieder von neuem verwendet. Den gleichzeitig entstandenen Salmiak zersetzt man immer wieder durch Kalk, um von Neuem Ammoniak daraus abzuscheiden, wobei sich als letztes Produkt Chlorcalcium bildet. Bei diesem Verfahren erspart man die mühevollen Schmelzoperationen; aber man gewinnt keine Salzsäure, die zu den unentbehrlichsten Chemikalien gehört und beim Leblanc-Verfahren als billiges Nebenprodukt entsteht.
In neuester Zeit stellt[9] man auch aus dem elektrolytisch gewonnenen Natriumhydroxyd Soda her, indem man[10] durch Einleiten von Kohlensäure zunächst Natriumdikarbonat (doppeltkohlensaures Natron) erzeugt.