But my readers, I trust, are of a better mind. So the next time they find themselves running up southward to London—or the reverse way—let them keep their eyes open, and verify, with the help of a geological map, the sketch which is given in the following pages.
Of the “Black Countries”—the actual coal districts I shall speak hereafter. They are in England either shores or islands yet undestroyed, which stand out of the great sea of New Red sandstone, and often carry along their edges layers of far younger rocks, called now Permian, from the ancient kingdom of Permia, in Russia, where they cover a vast area. With them I will not confuse the reader just now, but will only ask him to keep his eye on the rolling plain of New Red sands and marls past, say, Birmingham and Warwick. After those places, these sands and marls dip to the south-east, and other rocks and soils appear above them, one after another, dipping likewise towards the south-east—that is, toward London.
First appear thin layers of a very hard blue limestone, full of shells, and parted by layers of blue mud. That rock runs in a broad belt across England, from Whitby in Yorkshire, to Lyme in Dorsetshire, and is known as Lias. Famous it is, as some readers may know, for holding the bones of extinct monsters—Ichthyosaurs and Plesiosaurs, such as the unlearned may behold in the lake at the Crystal Palace. On this rock lie the rich cheese pastures, and the best tracts of the famous “hunting shires” of England.
Lying on it, as we go south-eastward, appear alternate beds of sandy limestone, with vast depths of clay between them. These “oolites,” or freestones, furnish the famous Bath stone, the Oxford stone, and the Barnack stone of Northamptonshire, of which some of the finest cathedrals are built—a stone only surpassed, I believe, by the Caen stone, which comes from beds of the same age in Normandy. These freestones and clays abound in fossils, but of kinds, be it remembered, which differ more and more from those of the lias beneath, as the beds are higher in the series, and therefore nearer. There, too, are found principally the bones of that extraordinary flying lizard, the Pterodactyle, which had wings formed out of its fore-legs, on somewhat the same plan as those of a bat, but with one exception. In the bat, as any one may see, four fingers of the hand are lengthened to carry the wing, while the first alone is left free, as a thumb: but in the Pterodactyle, the outer or “little” finger alone is lengthened, and the other four fingers left free—one of those strange instances in nature of the same effect being produced in widely different plants and animals, and yet by slightly different means, on which a whole chapter of natural philosophy—say, rather, natural theology—will have to be written some day.
But now consider what this Lias, and the Oolites and clays upon it mean. They mean that the New Red sandstone, after it had been dry land, or all but dry land (as is proved by the footprints of animals and the deposits of salt), was sunk again beneath the sea. Each deposit of limestone signifies a long period of time, during which that sea was pure enough to allow reefs of coral to grow, and shells to propagate, at the bottom. Each great band of clay signifies a long period, during which fine mud was brought down from some wasting land in the neighbourhood. And that land was not far distant is proved by the bones of the Pterodactyle, of Crocodiles, and of Marsupials; by the fact that the shells are of shallow-water or shore species; by the presence, mixed with them, of fragments of wood, impressions of plants, and even wing-shells of beetles; and lastly, if further proof was needed, by the fact that in the “dirt-bed” of the Isle of Portland and the neighbouring shores, stumps of trees allied to the modern sago-palms are found as they grew in the soil, which, with them, has been covered up in layers of freshwater shale and limestone. A tropic forest has plainly sunk beneath a lagoon; and that lagoon, again, beneath the sea.
And how long did this period of slow sinking go on? Who can tell? The thickness of the Lias and Oolites together cannot be less than a thousand feet. Considering, then, the length of time required to lay down a thousand feet of strata, and considering the vast difference between the animals found in them, and the few found in the New Red sandstone, we have a right to call them another world, and that one which must have lasted for ages.
After we pass Oxford, or the Vale of Aylesbury, we enter yet another world. We come to a bed of sand, under which the freestones and their adjoining clays dip to the south-east. This is called commonly the lower Greensand, though it is not green, but rich iron-red. Then succeeds a band of stiff blue clay, called the Gault, and then another bed of sand, the upper Greensand, which is more worthy of the name, for it does carry, in most places, a band of green or “glauconite” sand. But it and the upper layers of the lower Greensand also, are worth our attention; for we are all probably eating them from time to time in the form of bran.
It had been long remarked that certain parts of these beds carried admirable wheatland; it had been remarked, too, that the finest hop-lands—those of Farnham, for instance, and Tunbridge—lay upon them: but that the fertile band was very narrow; that, as in the Surrey Moors, vast sheets of the lower Greensand were not worth cultivation. What caused the striking difference?
My beloved friend and teacher, the late Dr. Henslow, when Professor of Botany at Cambridge, had brought to him by a farmer (so the story ran) a few fossils. He saw, being somewhat of a geologist and chemist, that they were not, as fossils usually are, carbonate of lime, but phosphate of lime—bone-earth. He said at once, as by an inspiration, “You have found a treasure—not a gold-mine, indeed, but a food-mine. This is bone-earth, which we are at our wits’ end to get for our grain and pulse; which we are importing, as expensive bones, all the way from Buenos Ayres. Only find enough of them, and you will increase immensely the food supply of England, and perhaps make her independent of foreign phosphates in case of war.”
His advice was acted on; for the British farmer is by no means the stupid personage which townsfolk are too apt to fancy him. This bed of phosphates was found everywhere in the Greensand, underlying the Chalk. It may be traced from Dorsetshire through England to Cambridge, and thence, I believe, into Yorkshire. It may be traced again, I believe, all round the Weald of Kent and Sussex, from Hythe to Farnham—where it is peculiarly rich—and so to Eastbourne and Beachey Head; and it furnishes, in Cambridgeshire, the greater part of those so-called “coprolites,” which are used perpetually now for manure, being ground up, and then treated with sulphuric acid, till they become a “soluble super-phosphate of lime.”