In 1853 we imported 1,940,000 lbs. of caoutchouc or India-rubber. The gum of a Brazilian-tree, discovered by some scientific Frenchman in 1735, had been employed for nearly a century for no higher purpose than rubbing out pencil-marks. After 1820 the mode of applying the substance for the production of water-proof garments was discovered. But even in 1830 we only imported 50,000 lbs. Since then caoutchouc has become one of our great materials of manufacture, applied, not only to clothing, but to useful articles of every description. Its great property of elasticity has rendered it available in numberless instances beyond those of making cloth water-proof and air-tight. When we discovered how to make India-rubber soluble by spirit, we obtained our water-proof clothes, our air-cushions, and water-beds. When machinery drew out the lump of gum into the finest threads, and connected them with cotton, flax, silk, or worsted, in a braiding-machine, we became provided with every species of elastic web that can render dress at once tight and easy. But chemistry has carried the use of India-rubber further than the spirit which dissolves it, or the machinery which splits it into minute threads. Chemistry has combined it with sulphur, and thus added in a remarkable degree to its strength and its elasticity. It has made it independent of temperature. It has doubled its utility. "Vulcanized India-rubber" is one of the most valuable of recent inventions.

It is a striking characteristic of our age, and particularly as compared with the period when India-rubber was first sent to Europe, that the application of gutta percha to the arts immediately followed the discovery of the substance. In 1842, Dr. Montgomerie was observing a wood-cutter at Singapore at his ordinary labour. Looking at the man's axe he saw that the handle was not of wood, but of some material that he had not previously known. The woodman told Dr. Montgomerie that, hard as the handle was, it became quite soft in boiling water, and could be moulded into any form, when it would again become hard. It was a gum from a tree growing in various islands of the Eastern archipelago, called pertsha. Specimens were immediately sent to the Society of Arts; and the inquiring surgeon to the Presidency at Singapore received the Society's gold-medal. In 1842-3, Mr. Lobb, visiting these islands to collect botanical specimens, also discovered the same tree, and the gum which issues from it.

In twelve years the wonderful utility of this new material has been established in very various applications. But the gum would have remained comparatively useless but for the inventive spirit which has subdued every difficulty of a new manufacture. The substance is now applied to the humblest as well as the highest purposes. It is a clothes' line defying the weather; it is a buffer for a railway carriage. It is a stopping for a hollow tooth; it is a sheathing for the wire that conveys the electric spark across the Channel. It is a cricket-ball; it is a life-boat in the Arctic seas. It is a noiseless curtain-ring; it is a sanitary water-pipe. It resists the action of many chemical substances, and is thus largely employed for vessels in bleaching and dyeing factories; it is capable of being moulded into the most beautiful forms, and thus becomes one of the most efficient materials for multiplying works of ornamental art. The collection of gutta percha has given a new stimulus to the feeble industry of the inhabitants of Java and Sumatra, and Borneo, and a new direction to the commerce of Singapore. It has brought the people of the Indian archipelago into more direct contact with European civilization.

Elæis Guineensis, and Cocos butyracea, yielding Palm-oil.

What the use of gutta percha is doing for the Malays, the use of palm-oil is doing for the Africans. A great commerce has sprung up on the African coasts, in which statesmen and philanthropists see the coming destruction of the slave-trade. In 1853 we imported seventy-one million lbs. of palm-oil and eighteen million lbs. of cocoa-nut oil. The greater part of this oil is for making candles. It is equal to three-fourths of all the tallow we import. What has created this enormous manufacture of one of the most improved articles of domestic utility? Knowledge. The palm-oil candles have been brought to their present perfection by chemical and mechanical appliances, working with the most complete division of labour, carried through by the nicest economy resulting from great administrative skill. 'Price's Candle Company' is a factory, or rather a number of factories, in which, in the exact proportion that the health, the comfort, and the intelligence of the workers is maintained in the highest efficiency, the profits of the capitalist are increased. The superior quality of the products of the oil-candle factories is the result of chemistry. A French chemist discovered that fats, such as oil, were composed of three inflammable acids—two of which, called stearic and margaric, are solid; and one called oleic, fluid. Another substance called glycerine is also present. The oil is now freed from the oleic acid and the glycerine, which interfere with its power of producing light, and the two solid acids are crystalized. What are called stearine and composite candles are thus produced, at a cost which is really less than that of the old tallow-candles, when we consider that they burn longer and with greater brilliancy, besides being freed from a disagreeable smell and from a tendency to gutter. Candles from animal fat have also been greatly improved by chemical appliances in the preparation of the tallow.

Science, we thus see, connects distant regions, and renders the world one great commercial market. Science is, therefore, a chief instrument in the production of commercial wealth. But we have a world beneath our feet which science has only just now begun to explore. We want fuel and metallic ore to be raised from the bowels of the earth; and, till within a very few years, we used to dig at random when we desired to dig a mine, or confided the outlay of thousands of pounds to be used in digging, to some quack whose pretensions to knowledge were even more deceptive than a reliance upon chance. The science of geology, almost within the last quarter of a century, has been able, upon certain principles, to determine where coal especially can be found, by knowing in what strata of earth coal is formed; and thus the expense of digging through earth to search for coal, when science would, at once pronounce that no coal was there, has been altogether withdrawn from the amount of capital to be expended in the raising of coal. That this saving has not been small, we may know from the fact, that eighty thousand pounds were expended fruitlessly in digging for coal at Bexhill, in Sussex, not many years ago, which expense geology would have instantly prevented; and have thus accumulated capital, and given a profitable stimulus to labour, by saving their waste. But geological science has not only prevented the expensive search for coal where it does not exist, but has shown that it does exist where, a few years ago, it was held impossible to find it. The practical men, as they are called, maintained that coal could not be found beneath the magnesian limestone. A scientific geologist, Dr. William Smith, held a contrary opinion; and the result of his abstract conviction is, that the great Hetton collieries have been called into action, which supply a vast amount of coal to the London market, found beneath this dreaded barrier of magnesian limestone. Geology—however scanty its facts at present are, compared with what they will be when miners have been accustomed to look at their operations from the scientific point of view—geology can tell pretty accurately in which strata of the earth the various metals are likely to be found; and knowing, to some extent, the strata of different countries, can judge of the probability of finding the precious metals as well as the more common. Sir Roderick Murchison, in 1844, expressed his belief, in a public address, that gold existed in the great Eastern Chain of Australia. In 1849, an iron-worker in Australia, reading this opinion, searched for gold, and found it. The discovery was neglected, till an enterprising man came from California, and completed the realization of the scientific prediction. The gold-diggings of Australia are producing, by their attraction to emigrants, changes in the amount and value of labour in the United Kingdom, which may materially affect the condition of every worker in the parent-land; and they have given an immense impulse to our home industry. The importance of gold, merely as a material of manufacture, may be estimated from the fact that in Birmingham alone a thousand ounces of fine gold are worked up every week; and that ten thousand ounces are annually used in the porcelain works of Staffordshire.

Whatever diminishes the risk to life or health, in any mechanical operation, or any exertion of bodily labour, lessens the cost of production, by diminishing the premium which is charged by the producers to cover the risk. The safety-lamp of Sir Humphry Davy, by diminishing the waste of human life employed in raising coals, diminished the price of coals. The contrivance is a very simple one, though it was no doubt the result of anxious and patient thought. It is a common oil-lamp, in which the flame is surrounded with a fine wire-gauze. The flame cannot pass through the gauze; and thus if the destructive gas of a coal-mine enters the gauze and ignites, the flame cannot pass again out of the gauze, and ignite the surrounding gas. Sometimes the inner flame burns with a terrible blue light. It is the symptom of danger. If the lamp were an open flame the fire-damp would shake the pit with one dreadful explosion. The safety-lamp yields a feeble light; and thus, unfortunately, the miner sometimes exposes the flame, and perishes. The magnetic mask, which prevents iron-filings escaping down the throats of grinders and polishers, and thus prevents the consumption of the lungs, to which these trades are peculiarly obnoxious, would diminish the price of steel goods, if the workmen did not prefer receiving the premium in the shape of higher wages, to the health and long life which they would get, without the premium, by the use of the mask. This is not wisdom on the part of the workmen. But whether they are wise or not, the natural and inevitable influence of the discovery, sooner or later, to lessen the cost of production in that trade, by lessening the risk of the labourers, must be established. The lightning conductor of Franklin, which is used very generally on the Continent, and almost universally in shipping, diminishes the risk of property, in the same way that the safety-lamp diminishes the risk of life; and, by this diminution, the rate of insurance is lessened, and the cost of production therefore lessened.