The means were tested for differences in the distances traveled between young and adult males and between young and adult females of each species, as well as between males and between females of opposite species. In all cases, there were no demonstrable differences in the distance traveled between captures.
One of the more striking journeys between captures was that of number 59, a juvenal male of P. maniculatus, which traveled 1,070 feet between captures on July 16 and 17, 1963. The route between the two capture sites was over the most rugged part of the trapping grid. This datum was excluded from further calculations. The only other animal that approached this distance was a young female P. truei that traveled 750 feet between captures.
[Figure 3] shows the distribution of distances traveled by mice of each species between successive captures. Since there were no demonstrable differences between age groups or sexes in the distances traveled, these data represent a composite of the ages and sexes of each species. They show 101-125 feet to be the most prevalent of the distances traveled by both species, and 51-75 feet to have a higher percentage of occurrence among P. maniculatus. These distances indicate that if an animal was trapped on successive nights, it tended to be trapped within the same unit of the grid. It would have been necessary for an animal to travel 200 feet or more in order to be caught in traps in an adjoining unit of the grid.
The distance between captures also was calculated by the more customary method of averaging the distances between sites of capture, regardless of the time intervening between captures.
Only data from mice caught four or more times were used because these individuals probably had home ranges in the study area, whereas those caught fewer than four times may have been migrants.
The mean distance between captures (n = 95) for 15 males and five females of P. maniculatus was 161 feet. Sixteen males and 22 females of P. truei traveled an average of 143 feet between captures (n = 248). For purposes of comparison, these average distances between captures could be considered as radii of the estimated home ranges. When the range for each species is calculated by considering average distance between captures as the radius of the estimated home range, the average range of P. truei is 64,210 square feet, and that of P. maniculatus is 81,392 square feet. Both of these estimations are larger than those made by the inclusive and exclusive boundary-strip method ([Table 3]), and smaller than those calculated by using adjusted length of range as the radius.
Since it is known that ranges of some animals tend to be longer than wide (Mohr and Stumpf, 1966), calculations of estimated range based on average distance between captures probably are more accurate than those based on adjusted length of range.
Usually the estimated home ranges were not symmetrical, and did not resemble oblongs or circles in outline. Rather, the ranges tended to follow parts of vegetational zones. Since trapping grids are geometrical in form, there is a tendency among investigators to consider home ranges of animals as conforming to geometrical design. This may or may not be the true situation; telemetric studies on larger animals indicate that home ranges do not conform to geometrical design. At present there is a poverty of knowledge concerning methods for determining the precise home ranges of small mammals. Telemetry appears to offer an unlimited potential for studies of this kind.