But we shall now find Einstein showing us, in luminous fashion, that this contraction is seen to be perfectly natural when we abandon certain conceptions—perhaps erroneous, though classical—which ruled our habitual and traditional way of estimating lengths of space and periods of time.

Take any object—a measuring rod, for instance. What is it that settles for us the apparent length of the rod? It is the image made upon our retina by the two rays that come from the two ends of the rod, and which reach our eye simultaneously.

I italicise the word, because it is the key of the whole matter. If the rod is stationary before us, the case is simple. But if it is moved while we are looking at it, the case is less simple. It is so much less simple that before the work of Einstein most of our learned men and the whole of classic science thought that the instantaneous image of an object that was not subject to change of shape was necessarily and always identical, and independent of the velocities of the object and the observer. The whole of classical science argued as if the spread of light was itself instantaneous—as if it had an infinite velocity—which is not the case.

I stand on the bank by the side of a railway. On the line is a handsome Pullman car, in which it is so pleasant to think that space is relative, in the Galileian sense of the word. Close to the line I have two pegs fixed, one blue, the other red, and they exactly mark the ends of the coach and indicate its length. Then, without leaving my observation-post on the bank, my face turned towards the middle of the coach, I give orders for the coach to be drawn back and coupled to a locomotive of unheard-of power, which is to carry the coach past me at a fantastic speed, millions of times faster than the speed any mere engineer could provide. Such is the potential superiority of the imagination over sober reality! I assume further that my retina is perfect, and is so constituted that the visual impressions will remain on it only as long as the light which causes them. These somewhat arbitrary suppositions count for nothing in the essence of the demonstration. They are only for the sake of convenience.

Now for the question. Will the coach (which I assume to be of some rigid metal), as it passes before me at full speed, seem to me to be exactly the same length as it did when it was at rest? To put it differently, at the moment when I see its front end coincide with the blue peg I had planted, shall I see its back end coincide at the same time with the red peg? To this question Galileo, Newton, and all the supporters of classic science would reply yes. Yet according to Einstein the answer is no.

Here is the simple proof, as we deduce it from Einstein’s general idea.

I am, recollect, on the edge of the track, at an equal distance from both pegs. When the front end of the coach coincides with the blue peg, it sends toward my eye a certain ray of light (which, for convenience, we will call the front ray), and this coincides with the luminous ray coming to me from the blue peg. This front ray reaches my eye at the same time as a certain ray that comes from the back end of the coach (which we will call the back ray). Does the back ray coincide with the ray which comes to me from the red peg? Clearly not. The front ray leaves the front end of the coach at the same speed as the back ray leaves the back end; as any observer in the coach would find who cared to try the Michelson experiment on them. But the front end of the coach is receding from me while the back end is approaching me. Hence the front ray travels toward my eye more slowly than the back ray, though I cannot perceive this, as, when they reach me, I find that they both have the same velocity. Hence the back ray, which reaches my eye at the same time as the front ray, must have left the back end of the coach later than the front ray left the front end of the coach. Therefore, when I see the front end of the coach coincide with the blue peg, I at the same time see the back end of the carriage after it has passed the red peg. Therefore the length of a coach travelling at full speed, and such as it appears to me, is shorter than the distance between the two pegs, which indicated the length of the coach at rest. Q.E.D.

Very little attention is needed for any person to understand this argument, though its elementary simplicity has not been attained without difficulty. It is part of Einstein’s mathematical argument and of his conception of simultaneity.


It follows that the coach, or, in general, any object, seems to be contracted in virtue of its velocity, and in the direction of that velocity, relatively to the spectator. The same thing happens, obviously, if the observer moves in relation to the object, because we can know only relative velocities, in virtue of the Classical Principle of Relativity of Newton and Galileo.