The converse of this is not true. For instance, there is not a single phenomenon in chemistry or biology in which one has not to study bodies in movement, objects endowed with mass and giving out or absorbing energy. On the other hand, the peculiar aspects of a biological, chemical, or physical phenomenon, such as the existence of a difference of potential, an oxidation, or an osmotic pressure, are not always found in the study of the movements of a ponderable mass and of the forces which act upon and through it.

Compared with mechanics, the sciences of physics, chemistry, and biology have, in the order in which we name them, objects of increasing complexity and generality, or, to put it better, of decreasing universality. These sciences are mutually dependent in the way that the trunk, branches, leaves, and flowers of a tree are. They are to some extent related to each other as are the various parts of the jointed masts on which military telegraphists fix their antennæ. The lower part of the mast, the larger part, sustains the whole; but it is the upper parts which bear the delicate and complicated organs.

The object of the great synthetists in science has always been, and is, to reduce all phenomena to mechanical phenomena, as Descartes attempted. Whether these attempts are well-grounded or no, whether they will some day succeed or are condemned a priori to failure because physico-biological phenomena involve elements that are essentially incapable of reduction to mechanical elements, is a question that has been, and will continue to be, much discussed. But, however thinkers may differ on that point, they are agreed on this: in all natural phenomena, in all phenomena that are objects of science, there is the mechanical element—exclusive in some, the principal element in others.

All this leads to the conclusion that whatever modifies mechanics, modifies at the same time the whole structure of ideas founded thereon—that is to say, the other sciences, the whole of science, our entire conception of the universe. But we are now going to see that Einstein’s theory, as a direct effect of what it teaches in regard to space and time, completely upsets the classical mechanics. It is in this way, particularly, that it has shaken the rather somnolent frame of traditional science, and the vibration is not yet over.

In approaching the Einsteinian mechanics we shall have the pleasure of passing from ideas of time and space that are rather too exclusively geometrical and psychological to the direct study of material realities, of bodies. Here we can compare theory and reality, the mathematical premises and the substantial verifications; and we shall be pleased to see what the facts, given in experience, have to say on the matter. We shall be able to make our choice, with informed minds and sound criteria, between the old and the new ideas.

In a word, if I may use this illustration, as long as we were dealing with ideas of space and time—which are empty frames in themselves, vases that would interest us chiefly by the liquids they contain—we were rather like the young men who have to choose a fiancée solely by the description of her which has been given them. We are now going to see with our own eyes, and see at work the two aspirants to our affection: classical science and Einstein’s theory. We shall see both of them take up the paste of facts, and we shall be able to compare the delicious dishes which they respectively make from it for the nourishment of the mind.

Theories have no value except as functions of facts. Those which, like so many in metaphysics, have no real criterion by which we may test them, are all of the same value. Experience, the sole source of truth of which Lucretius said long ago:

unde omnia credita pendent,

or the material facts, is going to judge Einstein’s system for us.