Lorentz’s explanation seemed to Einstein inadmissible on account of certain improbabilities which we pointed out, and especially because it assumes that there is in the universe a system of privileged references which recalls Newton’s “absolute space.” Einstein, taking his stand on the principle that all points of view are equally relative, does not admit that there are in the universe privileged spectators—spectators who are stationary in the ether—who could see things as they are, whereas these things would be deformed for every other observer.
Then, while preserving the Lorentz contraction and the formulæ in which it is expressed, Einstein says that this contraction, while it really exists, is only an appearance, a sort of optical illusion, due to the fact that the light which shows us objects does not travel instantaneously, but with a finite velocity. This spread of light follows laws of such a nature that apparent space and time are changed in precise accordance with the formulæ of Lorentz. That is the foundation of Einstein’s Special Relativity.
Hence the two immediate possible explanations of the negative result of the Michelson experiment are:
1. Moving objects are contracted in the stationary ether, the fixed substratum of all phenomena. This contraction is real, and it increases with the velocity of the body relatively to the ether. That is Lorentz’s explanation.
2. Moving objects are contracted relatively to any observer whatsoever. This contraction is only apparent, and is due to the laws of the propagation of light. It increases with the velocity of the moving body relatively to the observer. That is Einstein’s explanation.
But there is at least one other possible explanation. It introduces new and strange hypotheses, but they are by no means absurd. Indeed, it is especially in physics that truth may at times seem improbable. This explanation will show how we may account for the result of the Michelson experiment apart from either Lorentz or Einstein.
This third explanatory hypothesis is as follows. Every material body bears along with it, as a sort of atmosphere, the ether that is bound up with it. There is, in addition, a stationary ether in the interstellar spaces; an ether insensible to the motion of the material bodies that move in it, and which we may, to distinguish it from the ether bound up with bodies, call the “super-ether.” This super-ether occupies the whole of interstellar space, and near the heavenly bodies it is superimposed upon the ether which they bear along. The ether and the super-ether interpenetrate each other just as they penetrate matter, and the vibrations they transmit spread independently. When a material body sends out series of waves in the ether which surrounds it, these move relatively to it with the constant velocity of light. But when they have traversed the relatively thin stratum of ether bound up with the material body, which merges gradually in the super-ether, they spread in the latter, and it is relatively to this that they progressively take their velocity.
It is like a boat crossing the Lake of Geneva at a certain speed. About the middle of the lake it has this speed relatively to the narrow current which the River Rhone makes there, and then it resumes it relatively to the stationary lake.
In the same way the luminous rays of the stars, although they come from bodies which are approaching or receding from us, have the same velocity when they reach us, and this will be the common velocity which the super-ether imposes upon them. Thus also, on the other hand, the stellar rays that reach our telescopes will be transmitted to us by the super-ether, without the very thin stratum of mobile ether bound up with the earth being able to disturb their propagation.