It is a further advantage if the metals which fulfil the above conditions are cheap and durable.

The exacting character of these requirements delayed the production of a reliable thermo-electric pyrometer until 1886, when Le Chatelier discovered that a junction formed of platinum as one metal, and an alloy of 90 per cent. of platinum and 10 per cent. of rhodium as the other, gave concordant results. In measuring the E.M.F. produced, Le Chatelier took advantage of the moving-coil galvanometer introduced by d’Arsonval, which possessed the advantages of an evenly-divided scale and a dead-beat action. This happy combination of a suitable junction with a simple and satisfactory indicator immediately established the reliability of the thermo-electric method of measuring temperatures. As platinum melts at 1755° C., and the rhodium alloy at a still higher temperature, a means was thus provided of controlling most of the industrial operations carried out in furnaces.

So far, the effect of heating the junction has been considered without regard to the temperature of the remainder of the circuit, and it is necessary, before describing the construction of practical instruments, to consider the laws governing the thermo-electric circuit, the simplest form of which is represented in [fig. 2]. One of the wires is connected at both ends to separate pieces of the other wire, the free ends of which are taken to the galvanometer Two junctions, A and B, are thus formed, which evidently act in opposition; for if on heating A the direction of current be from A to B, then on heating B the direction will be from B to A. Hence if A and B were equally heated no current would flow in the circuit, the arrangement being equivalent to two cells of equal E.M.F. in opposition. Thermal junctions are formed at each of the galvanometer terminals, but the currents to which they give rise, when the temperature changes, are opposed and cancel each other. The law which holds for this circuit may be expressed thus:—

“If in a thermo-electric circuit there be two junctions, A and B, the electromotive force developed is proportional to the difference in temperature between A and B.”

Fig. 2.—Two-junction Thermo-electric Circuit.

It is customary to refer to the two junctions as the “hot” and “cold” junctions; but it is important to remember that fluctuations in the temperature of either will alter the reading on the galvanometer or indicator.

A second law, which applies to all thermo-electric circuits, is that “the E.M.F. developed is independent of the thickness of the wire.” This does not mean that the deflection of the galvanometer is the same whether thin or thick wires are used to form the junction. The deflection depends upon the current flowing through the circuit, and this, according to Ohm’s law, varies inversely as the total resistance of the circuit. Consequently, the use of thin wires of a given kind will tend to give a less deflection than in the case of thick wires, as the resistance of the former will be greater, and unless the resistance of the galvanometer be great compared with that of the junction, the difference in deflection will be conspicuous. The E.M.F., however, is the same under given conditions, whatever thickness of wire be used.

Reference to [fig. 2] will show that in order to realise this circuit in practice, one of the wires forming the couple must be used in the form of leads to the galvanometer. This can readily be done if the material of the wire is cheap; but if platinum or other expensive metal be used, and the galvanometer be some yards distant, the question of cost necessitates a compromise, and the circuit is then arranged as in [fig. 3]. The wires forming the hot junction are brought to brass terminals T T, from which copper wires lead to the galvanometer G. This arrangement results in three effective junctions, viz. the hot junction A to B; the junction A to brass, and the junction B to brass. It will be seen that the two junctions of copper to brass are in opposition, and cancel each other for equal heating; and the same applies to the galvanometer connections. A circuit thus composed of three separate junctions does not permit of a simple expression for the net E.M.F. under varying temperature conditions, and to avoid errors in readings care must be taken to prevent any notable change of temperature at the terminals T T in a practical instrument arranged as in the diagram.