It must be clear, however, that in a solid body one atom attracts another atom across the intervening atomic spaces. This is another duty devolving upon us; what we do, really, is to upset the electric balance between the different atoms, and thus produce electrical attraction.

First of all, perhaps, I should explain that the different kinds of atoms are simply congregations of different numbers of electrons. Of course there is the other part, of which I am forbidden to speak—the part which man vaguely describes as positive electricity. However, you may take it from me that while it is true that the main difference between an atom of gold and an atom of iron, or of oxygen, is in the number of electrons it contains, there is a very important difference in the arrangement of the electrons. You know that they form rings outside one another, all of which revolve at enormous speeds. The number of electrons in the different rings varies according to the kind of atom.

It is quite correct for man to speak of the atoms containing certain definite numbers of electrons, but I should like you to understand clearly that the exact number of electrons is not permanently fixed; one or more electrons can slip off one atom and become attached to a neighbouring atom which happens to be capable of accepting it or them. It is the interchange of these few detachable electrons that causes one atom to attract another. In other words, it is the differently charged atoms which attract each other, just as man crowds a surplus of electrons on to one object and finds it attracted bodily towards another object having a deficiency of electrons.

It is this electrical attraction between the atoms which enables us to build up the particles, or molecules, of matter in such a variety of forms. First of all, we play the most important part within the atoms. We have formed only a limited number of such atoms. I am not free to tell you exactly how many, for man has discovered only about eighty of these different congregations of electrons, each kind of which he calls an element. The way in which we have coupled these different elementary atoms together must appear remarkable to all thinking men; there seems to be no end to the possible variety of combinations.

In one case we unite an atom of chlorine to an atom of sodium and thereby produce a molecule of common salt. In another case we unite an atom of oxygen to two atoms of hydrogen, and the resulting combination is an invisible molecule of ordinary water.

It has always seemed to me very strange how some men have difficulty in regard to these combinations. I have heard a man ask how two different gases, hydrogen and oxygen, when united, should form a liquid, and not a gas. I wish you could see things as we see them. The atoms are neither gaseous, liquid, nor solid; they are little worlds of revolving electrons.

I have spoken of the attraction between atoms, and again between molecules, in form ing a solid body. It will be clear that there is less of this cohesive force in the case of a liquid, whereas it is absent entirely in the case of a gas. In this case the molecules have become so far separated from one another that they cease to attract each other, and if left free they will soon part company, and spread themselves broadcast over the face of the earth.

Whether a substance passes into a solid, a liquid, or a gaseous state, the atoms remain constant, but their vibratory motion is altered very considerably. However, I was about to tell you that we electrons can make some very interesting combinations of atoms. Those I have mentioned so far are of a very simple nature, but we have built up individual molecules containing hundreds of atoms. We link about a hundred atoms together and produce a molecule of what man calls alum, and we require to unite about a thousand atoms together to make one molecule of albumen (the white of an egg).

When man speaks of a chemical change having taken place in a substance, it is simply the electrons who have made a friendly interchange of detachable electrons, thereby causing a different assemblage of the same atoms. During these changes we never alter the nature of the atom. That little world of revolving electrons known as an atom of gold, remains always an atom of gold. But you must not run away with the idea that the atoms will never change. Indeed, man has discovered that the atoms are not eternal, as I shall explain in the following chapter.