It was observed by the early experimenters that there were two kinds of electrification. To one of these they gave the name positive electricity, and to the other negative electricity.

Every electrified object will attract an object which is not electrified, and two objects which are oppositely electrified will attract one another also. But two objects which are similarly electrified will repel each other.

Man got tired of rubbing objects by hand, so he fitted up simple machines in which glass cylinders or plates were rubbed against leather cushions. The electricity was then collected by little metal points supported on an insulated metal sphere.

The experiment of attempting to store electricity in a glass vessel filled with water was made at the University of Leyden (Netherlands). The water was replaced later by a coating of tin-foil on the inner surface, while a similar metallic coating on the outside took the place of the experimenter's hand. These jars are called Leyden jars, after the place in which the discovery was made.

About 1790, Professor Galvani, of Italy, observed that the legs of a freshly killed frog twitched at each discharge of an electrical machine. Later he found that the same twitching occurred when he connected certain parts with a piece of copper and zinc. He believed this to be due to "animal electricity" secreted within the frog.

Professor Volta, also of Italy, proved that Galvani's idea was wrong, and that the electricity resided in the metals rather than in the frog. He showed that when two pieces of dissimilar metal were put in contact with one another, there was a slight transference of electricity between them. He constructed a pile of copper and zinc discs, with a moist cloth between each pair or couple, and by connecting wires from the top copper disc to the lowest zinc disc he was able to show that an appreciable current of electricity was produced. Later he placed a piece of copper and a piece of zinc in a vessel containing acidulated water, whereupon he found that a steady current of electricity was obtained. This was the invention of electric batteries.

The phenomena of magnetism were known to the ancients, but it was not until the nineteenth century that we found any real connection between electricity and magnetism. In 1819, a Danish philosopher, Hans Christian Oersted, discovered that an electric current passing in a wire affected a magnet in its neighbourhood. If the magnet was supported on a pivot, after the manner of a compass needle, it would turn round and take up a position at right angles to the wire carrying the electric current.

The molecular theory of magnetism presumes that every molecule of iron is a tiny magnet, having a north and south pole. In a piece of unmagnetised iron, these tiny magnets are all lying so that they neutralise one another. When they are turned round so that their north poles are all lying in one direction, then the iron is said to be magnetised.

The electron theory of magnetism does not do away with the older molecular theory just referred to. The electron theory goes a step farther, and tells us that these molecules are magnets because of a steady motion of electrons around the atoms of iron.

It was discovered in 1825 that when an electric current was sent through an insulated wire wound around a piece of soft iron, the iron became a magnet; when the current was stopped the magnetism disappeared. Such magnets are called electro-magnets. If a piece of hard steel is treated in the same way it becomes a permanent magnet. It was this intimate connection between electricity and magnetism, or, in other words, the invention of these electro-magnets, which brought us electric bells, telegraphs, telephones, dynamos, and electric motors.