Directly after this triumph I received an order from Mr. John Penn for a governor to regulate the engine driving his marine-engine works at Greenwich. This was the first and only engine I ever saw of the grasshopper class, quite common, I learned, in earlier days. The superintendent of his works afterwards told me, laughingly, that he had a large account against me for loss of time; that he had become so fascinated with the governor action that he had stood watching it sometimes for twenty minutes. He knew by the position of the governor every large tool that was running and what it was doing, if light or heavy work, and especially every time a planer was reversed.

One day a gentleman asked me if I thought the governor could regulate his engine. He was a manufacturer of the metal thread used in making gold lace. A bar of silver, 2 inches in diameter and 2 or 3 feet long, was covered with three or four thicknesses of dentists’ gold leaf, and then drawn down to exceedingly fine threads, and the gold surface was never broken. I have often wondered how thick that gold covering finally was. The heavy drawing of the cold bars required a great deal of power, and when they shot out the engine would run away and the fine threads would be broken. No governor nor heavy fly-wheel would help the matter, and they had to do their heavy drawing in the night. My governor maintained the motion absolutely. Not only were the finest threads not broken by the sudden changes in the heavy drawing, but the occasional breakages that they had been accustomed to nearly ceased.

In this connection I cannot refrain from telling a good story on Mr. Ramsbottom and Mr. Webb, although the incident happened the next year. I received an order for a governor for the engine driving the shops of the London & Northwestern Railway at Crewe. Soon after its shipment there came a line from the office there that the governor was behaving badly and I would have to go and see about it. I found that the engine consisted of a pair of locomotive cylinders set upright on the floor and directly connected above, the cranks at right angles with each other, to the line-shaft, a plan which I have always admired, as a capital way of avoiding belts or gearing. They were running at 120 revolutions per minute, and were connected in the middle of the shaft, which was about 400 feet long. The governor was flying up and down quite wildly. I had never seen such an action before, and was at a loss what to make of it. I saw no fly-wheel, but it did not seem that its absence could account for this irregularity. Indeed, with coupled engines running at this speed, and only trifling changes of load, and a governor requiring no time to act, a fly-wheel seemed superfluous. Pretty soon it came out that the want of fly-wheel could not cause the trouble, for they had two. Where were they? There was one at each end of the shaft, close to the end walls of the building, where wall boxes afforded excellent supports. Fly-wheels at the ends of 2-inch shafts and 200 feet from the engine! I fairly shouted with laughter, told them to take off their fly-wheels, and came home. The fly-wheels were taken off, and there was no further trouble. Well, what should railway engineers, absorbed in locomotive designs and everything pertaining to railroading, be expected to know about fly-wheel inertia and shaft torsion?

About midsummer I had the pleasant surprise of a visit from Mr. Allen, whose gratification at the show I had made was unbounded. We saw much of the exhibition together. Perhaps the most interesting exhibits in the machinery department, to us both, were the working models shown by the marine-engine builders. There were a large number of these, generally not much over one foot in any dimension, but complete to every bolt and nut, superbly finished, and shown in motion. They had evidently been made regardless of cost. In the progress of engineering science, everything represented by these elegant toys has long since vanished. We were much impressed by a cylinder casting, 120 inches in diameter, shown by Mr. Penn, one of a pair made for a horizontal engine for a British warship, to work steam at 25 pounds pressure. Everything there shown pertaining to steam engineering, except our own engine, was about to disappear forever. How long before that also shall follow?

Soon after Mr. Allen’s return he sent me a drawing of his four-opening equilibrium valve with adjustable pressure-plate. I realized the great value of this most original invention, now so well known, but its adoption required a rescheming of the valve-gear, and that had to be postponed for some years.

In setting up the engine in the works of Easton, Amos & Sons, I had a curious example of English pertinacity. Old Mr. Amos said to me, “Porter, where is your pump?” “The engine has no pump.” “No pump!” “No, sir; we consider a feed-pump as an adjunct to the boiler, never put it on the engine, and generally employ independent feed-pumps which can be adjusted to the proper speed. Besides, a feed-pump could not be run satisfactorily at the speed of this engine.” He heard me through, and then, with a look of utter disgust, exclaimed: “If a man should sell me a musket and tell me it had no stock, lock, or barrel, these were all extra, I should think it just about as sensible.” Nothing would do but that this engine must have a pump. I had intended to cut off the projecting end of the shaft, but Mr. Amos ordered this to be left, and had an eccentric fitted on it, and set a vertical pump on the floor to be driven by this eccentric, at 225 double strokes per minute. Also the feed-pipe had to be over 50 feet long, with three elbows.

Of course, as the boys say, we had a circus. A mechanic had a daily job, mornings, when the engine was not running, securing that pump on its foundation. The trembling and pounding in the feed-pipe were fearful. I suggested an air-chamber. They sent word to me that they had put on an air-chamber, but it did no good. I went to look at it, and found a very small air-chamber in the middle of the length of the pipe, where it seemed to me more likely to do harm. At my suggestion they got one of suitable size and attached it to the pump outlet, when the noise and trembling mostly disappeared, as well as the disposition of the pump to break loose. It did fairly well after that, and they made it answer, although I do not suppose it ever one quarter filled.

Mr. Amos was the consulting engineer of the Royal Agricultural Society. At this exhibition American reapers made an invasion of England. Mr. Amos set his face against them, and in reply to my question, what objection he made to them, he said, “We prefer to get our grain into the barn, instead of strewing it over the field.” And yet this man, the engineering head of this firm, was the only man in England, so far as I knew, advanced enough to take up the Wolff system of compounding, and who had bought my engine to run at 225 revolutions per minute, which it continued to do with complete satisfaction until some years later, when these works were removed to a location on the Thames, east of London, when I lost sight of them.

During the latter part of the exhibition I learned that the McNaught and the Hopkinson indicators were in common use in England; that one or both of these were to be found in the engine-rooms of most mills and manufacturing establishments, and that if the Richards indicator were properly put on the market there would probably be some demand for it, although at existing engine speeds the indicators in use appeared to be satisfactory. A special field for its employment would doubtless be found, however, in indicating locomotives. I felt sufficiently encouraged to set about the task of standardizing the indicator, and during the winter of 1862-3 made a contract with the firm of Elliott Brothers, the well-known manufacturers of philosophical apparatus and engineering and drawing instruments, to manufacture them according to my plans.

This was my first attempt to organize the manufacture of an instrument of any kind, and I set about it under a deep sense of responsibility for the production of an indicator that should command the confidence of engineers in its invariable truth. I found that the opportunity I had enjoyed for studying the subject had been most important. The daily use of the indicator which I had brought to the exhibition was an invaluable preparation for this work.