BURROW SYSTEMS, OR DENS.

The burrow system, or den, in which spectabilis stores its caches of food materials, has its nest, and remains throughout the hours of daylight is a complicated labyrinth of tunnels. Ejection of refuse and soil from this retreat builds up the mound frequently referred to. These mounds are, as Bailey says, characteristic of the species, and are as unmistakable as muskrat houses or beaver dams, and as carefully planned and built for as definite a purpose—home and shelter. They are, furthermore, the most notable of all kangaroo rat dwelling places (Nelson, 1918, 400). They range in height from 6 inches to approximately 4 feet and from 5 to 15 feet in diameter.

The mound is built up not only through the cleaning out of chaff and other food refuse, but through extension and modification of the tunnels; old tunnels, entrances, and caches of musty food material are from time to time closed up and others excavated, repair and rebuilding being especially necessary after the collapse of portions of the den as a result of heavy rains or trampling by cattle. Ejected material is most commonly simply thrown out fan-wise from the openings, without much apparent effort to add to the height of the mound.

There are usually from 6 to 12 entrance holes in each mound opening into the subterranean burrow system, each hole from 4 to 5-1/2 inches in diameter. These holes are nearly all situated a little above the surface of the surrounding soil, and as Price has suggested (in Allen, 1895, 213), this is doubtless a wise provision against flooding, as torrential rains sometimes occur in the kangaroo rat country.

Both Bailey and Nelson state that as a rule several of the holes are closed with sand or miscellaneous earth and old storage material during the daytime, but our observations on the Range Reserve are that such closing is only occasional. Many occupied dens have not a single opening closed. Further, night observations disclose that the inhabitant of the mound will appear from some one of the two or three most-used openings when night falls, and not necessarily from one which has been closed by day. Recently an opening closed one day was observed in use during the night, but was left open all the next day.

In attempting to determine whether there exist similarities of plan or system in the dens, it was considered advisable to map them with some degree of accuracy. This we were enabled to do by laying off a square about a given mound, 2-1/2 or 3 meters each way, and subdividing it into a series of small squares of half a meter on each side by drawing cross-lines on the surface of the ground over the top of the mound. One person then did the digging and exploring of the tunnels, as to direction and depth, while the other noted the results on coordinate paper ([Figs. 2] and [3]); the proper excavation and mapping of one of these workings occupied from four to eight hours for the two.

Fig. 2.—Diagram of a typical den of Dipodomys spectabilis spectabilis. Double shading indicates where one portion of tunnel lies above another and solid black a three-story arrangement; A, B, C, etc., active openings to surface; figures without arrows, depths in centimeters to tunnel roofs; figures with arrows, tunnel widths in centimeters; N. nest chamber; S, storage; OS, old storage; Y, probably an old nest chamber; Z, old, unused, or partially plugged openings.

While there is greater complexity in the larger, and probably older, mounds than in the smaller, all are extremely complicated and can only be described as labyrinthine in character. The tunnels wind about through the mound, rising and falling in vertical depth, intercommunicating frequently, but with occasional cul-de-sacs, and in places expanding into chambers, of which there may be three or four large ones. The stored materials are found in some, but not necessarily all, of these chambers, and may also occupy considerable lengths of ordinary tunnel, especially when the quantity present is large. Small evaginations of the tunnels frequently contain lesser caches, and it is in such pockets that bits of fresh material are placed during a growing season, or that grain supplied the previous night for bait is usually found.

The main masses of storage are most often found centrally located at depths of from 15 to 57 centimeters, although at times one may find a cache near the periphery of the system and as near the surface as 2 or 3 centimeters. In the latter case the materials are subject to wetting from rains, and consequent spoilage.