[FIG. 79—Method of anchoring the foreign body against the tube mouth After the object has been drawn firmly against the lip of the endoscopic tube the left finger and thumb grasp the forceps cannula and lock it against the ocular end of the tube, the other fingers of the left hand encircle the tube. Withdrawal is then done with the left hand; the fingers of the right hand maintaining closure of the forceps.]

[164] Bringing the Foreign Body Through the Glottis.—Stripping of
the foreign body from the forceps at the glottis may be due to:
1. Not keeping the object against the tube mouth as just mentioned.
2. Not bringing the greatest diameter of the foreign body into the
sagittal plane of the glottic chink.
3. Faulty application of the forceps on the foreign body.
4. Mechanically imperfect forceps.

Should the foreign body be lost at the glottis it may, if large become impacted and threaten asphyxia. Prompt insertion of the laryngoscope will usually allow removal of the object by means of the laryngeal grasping forceps. The object may be dropped or expelled into the pharynx and be swallowed. It may even be coughed into the naso-pharynx or it may be re-aspirated. In the latter event the bronchoscope is to be re-inserted and the trachea carefully searched. Care must be used not to override the object. If much inflammatory reaction has occurred in the first invaded bronchus, temporarily suspending the aerating function of the corresponding lung, reaspiration of a dislodged foreign body is liable to carry it into the opposite main bronchus, by reason of the greater inspiratory volume of air entering that side. This may produce sudden death by blocking the only aerating organ.

Extraction of Pins, Needles and Similar Long Pointed Objects.—When searching for such objects especial care must be taken not to override them. Pins are almost always found point upward, and the dictum can therefore be made, "Search not for the pin, but for the point of the pin." If the point be found free, it should be worked into the lumen of the bronchoscope by manipulation with the lip of the tube. It may then be seized with the forceps and withdrawn. Should the pin be grasped by the shaft, it is almost certain to turn crosswise of the tube mouth, where one pull may cause the point to perforate, enormously increasing the difficulties by transfixation, and perhaps resulting fatally (Fig. 80).

[FIG. 80.—Schematic illustration of a serious phase of the error of hastily seizing a transfixed pin near its middle, when first seen as at M. Traction with the forceps in the direction of the dart in Schema B will rip open the esophagus or bronchus inflicting fatal trauma, and probably the pin will be stripped off at the glottic or the cricopharyngeal level, respectively. The point of the pin must be disembedded and gotten into the tube mouth as at A, to make forceps traction safe.]

[FIG. 81.—Schema illustrating the mechanical problem of extracting a pin, a large part of whose shaft is buried in the bronchial wall, B. The pin must be pushed downward and if the orifice of the branches, C, D, are too small to admit the head of the pin some other orifice (as at A) must be found by palpation (not by violent pushing) to admit the head, so that the pin can be pushed downward permitting the point to emerge (E). The point is then manipulated into the bronchoscopic tube-mouth by means of co-ordinated movements of the bronchoscopic lip and the side-curved forceps, as shown at F.]

Inward Rotation Method.—When the point is found to be buried in the mucosa, the best and usually successful method is to grasp the pin as near the point as possible with the side-grasping forceps, then with a spiral motion to push the pin downward while rotating the forceps about ninety degrees. The point is thus disengaged, and the shaft of the pin is brought parallel with that of the forceps, after which the point may be drawn into the tube mouth. The lips added to the side-curved forceps by my assistant Dr. Gabriel Tucker I now use exclusively for this inward rotation method. They are invaluable in preventing the escape of the pin during the manipulation. A hook is sometimes useful in disengaging a buried point. The method of its use is illustrated in Fig. 82.

[FIG. 82.—Mechanical problem of pin, needle, tack or nail with embedded point. If the forceps are pulled upon the pin point will be buried still deeper. The side curved forceps grasp the pin as near the point as possible then with a corkscrew motion the pin is pushed downward and rotated to the right when the pin will be found to be parallel with the shaft of the forceps and can be drawn into the tube. If the pin is prevented by its head from being pushed downward the point may be extracted by the hook as shown above The side curved forceps may be used instead of the hook for freeing the point, the author's "inward rotation" method. The very best instrument for the purpose is the forceps devised by my assistant, Dr. Gabriel Tucker (Fig. 21). The lips prevent all risk of losing the pin from the grasp, and at the same time bring the long axis of the pin parallel to that of the bronchoscope.]

Pins are very prone to drop into the smaller bronchi and disappear completely from the ordinary field of endoscopic exploration. At other times, pins not dropping so deeply may show the point only during expiration or cough, at which times the bronchi are shortened. In such instances the invaded bronchial orifice should be clearly exposed as near the axis of its lumen as possible; the forceps are now inserted, opened, and the next emergence watched for, the point being grasped as soon as seen.

Extraction of Tacks, Nails and Large Headed Foreign Bodies from the Tracheobronchial Tree.—In cases of this sort the point presents the same difficulty and requires solution in the same manner as mentioned in the preceding paragraphs on the extraction of pins. The author's inward-rotation method when executed with the Tucker forceps is ideal. The large head, however, presents a special problem because of its tendency to act as a mushroom anchor when buried in swollen mucosa or in a fibrous stenosis (Fig. 83). The extraction problems of tacks are illustrated in Figs. 84, 85, and 86. Nails, stick pins, and various tacks are dealt with in the same manner by the author's "inward rotation" method.