THE CONTROLLING OF LATEST-TYPE CRAFT

People are puzzled, often, when they try to explain to themselves how it is that an aeroplane, which is so much heavier than air, manages to leave the ground and to soar in flight. When balloons or airships ascend, it is realised of course that the gas, imprisoned within their envelopes, draws them upward. But the aeroplane—weighing with pilot, passenger, and fuel perhaps several thousand pounds—rises without the aid of a gas-bag and with nothing to sustain it but narrow planes; and these do not beat, like the wings of a bird, but are fixed rigidly on either side of its body. How is the weight of machine and man borne through this element we cannot see, and which appears intangible?

The secret is speed—the sheer pace at which an aeroplane passes through the air. As a craft stands on the ground, its planes are inoperative. Power lies dormant in the air, but only when it is in motion, or when some object or apparatus is propelled through it at high speed. Have you stood on a height, in a gale, and felt an air wave strike powerfully against your body? The blow is invisible; but you yield a step, gasping; and, had you wings at such a moment, you would not doubt the power of the wind to sweep you upward. This is the force the aeroplane utilises.

If, on a calm day, you accelerate your motor-car to 60 miles an hour, the air sweeps past you in a powerful stream; just as it would if you were standing still, and there was a gale of wind. Instead of the wind possessing the speed, in this instance, it is you who provide it. The motor of an aeroplane, driving the propeller of the machine, turns this at 1000 or more revolutions a minute, and causes its curved blades to screw forward through the air as they turn, like those of a ship's propeller through water—or a gimlet into wood. The propeller, as it bores its way into the air, draws or pushes the aeroplane across the ground; and the speed grows rapidly until the air, sweeping with an increasing pressure beneath the planes, becomes sufficient to bear the craft in flight.

But the wing of an aeroplane would not sustain its load unless designed specially to act upon the air. A man, if he is unlucky enough to fall from a tall building, passes through the air at a high speed. His body obtains no support from the air; so he crashes to the ground. This is because his body is heavy, and presents only a small surface to the air. To secure a lifting influence from the air, it must be struck swiftly with a large, light surface.

Men go to Nature when building wings for aeroplanes, and imitate the birds. The wing of a bird arches upward from front to back, most of the curve occurring near the forward edge; and this shape, when applied to an aeroplane wing, is known as its camber. With an aeroplane wing, if its curve is adjusted precisely, the air not only thrusts up from below as a machine passes through it, but has a lifting influence also from above; an effect that is secured by the downward slope of the plane towards its rear edge. The air, sweeping above the raised front section of the plane, is deflected upward, and with such force that it cannot descend again immediately and follow the downward curve of the surface. So, between this swiftly-moving air stream, and the slope to the rear of the plane, a partial vacuum is formed, and this sucks powerfully upward. With a single wing, therefore, it is possible to gain a double lifting influence—one above and one below.

The building of aeroplanes, once their wing lift is known, becomes a matter of precision. According to the speed at which they fly, and the size and curve of their planes, machines will sustain varying loads. In some machines, as a general illustration—craft which fly fast—the planes may bear a load equal to 10 lbs. per square foot. In others the loading may be less than 3 lbs. per square foot.

Apart from raising a craft into the air, by the lifting power of its wings, there is the problem of controlling it when in flight. The air is treacherous, quickly moving. Gusts of abnormal strength, sweeping up as they do invisibly, may threaten to overturn a machine and dash it to earth. Eddies are formed between layers of warm and cold air. There are, as a craft flies, constant increases or lessenings of pressure in the air-stream that is sweeping under and over its wings; and all these fluctuations influence its equilibrium. Unless, therefore, a machine is automatically stable—and with craft of this type we shall deal later—the pilot must be ready, by a movement of the surfaces which govern the flight of the machine, to counteract quickly, with a suitable action of his levers, the overturning influence that may be exercised by a gust of wind. Here lies the art of flying. A man is given a machine which, by the action of its motor and propeller, will raise itself into the air; and it is his task, when the craft is once aloft, to manipulate it accurately and without accident, and to bring it to earth safely after he has made a flight.

In the description of controlling movements which follows we shall, for the sake of convenience, and for the sake also of brevity, deal only with the type of "pusher" biplane to which reference has been made already, and on which large numbers of pupils have been, and are being, trained to fly. This casts no aspersion whatever on tractor machines or on monoplanes. On either, if he has an inclination, a pupil can undergo his instruction, and do so usually with success. But explanation is rendered more easy, and there is less likelihood of a dispersal of interest, if one machine is selected for illustration; and our reasons for the choice of a "pusher" biplane, regarded from the point of view of tuition, have been explained already.

First, therefore, one may deal with raising the craft into the air, and causing it to descend. In the photograph of the school machine shown, [facing this page] it will be seen that the control surfaces are indicated by lettering. In front of the biplane, on outriggers, is the plane "A." This surface (aided in its action by a rear plane) governs the rise or descent of the machine. When the motor is started, and the propeller drives the biplane across the ground on its chassis B, the machine would, if this lifting plane was held in a negative position, continue to move forward on the earth and would make no attempt to rise. In order to leave the ground, when the speed of the machine is sufficient for its main-planes (C.C.) to become operative, and bear its weight through the air, the pilot draws back slightly towards him a lever, which is placed just to the right of his driving-seat and is held with the right hand. A photograph which shows this lever, and the other controls, appears, [facing page 36] the lever to which we are referring being indicated by the figure 1. The effect on the aircraft when the pilot draws back this lever—the motion being slight and made gently—is to tilt up the elevating plane A, and this in its turn, owing to the pressure of air upon it, raises the front of the machine. The result of this alteration in the angle of the craft is that it presents its main-planes at a steeper angle to the air. Their lifting influence is increased, with the result that—at an angle governed by the pilot with his movement of the elevating plane—they bear the machine from the ground into the air.