In this fashion it reached Calais, greatly to the surprise of those who had, hitherto, only been familiar with the huge cases needed for the transport of biplanes. When taken from the railway van, the monoplane was tied with ropes behind a motor-car, and ran upon its own pneumatic-tyred wheels to the shelter prepared for it near the sand-hills of Les Baraques, a mile or so from Calais.

Blériot, as history records, won the £1000 prize by flying across the
Channel from France to England, just after the dawn on 25th July, 1909.
He landed near Dover Castle, after a flight of thirty-seven minutes.
Latham, unfortunate with his engine, made two attempts at the crossing,
but fell into the sea on both occasions.

Blériot’s feat made a deep impression upon all thoughtful men, and particularly upon the military authorities in France. If such a flight could be achieved with a small, crude machine, what might not be possible with a perfected apparatus? This, naturally, was the question which was asked.

In the next important demonstration of the possibilities of flight, which was made at the Rheims flying meeting, held in August, 1909, the French Government took a very active interest. They sent special representatives to this meeting—the first of its kind—to study the various types of flying machines which took part in the contests organised. As a further instance of the practical ideas already being displayed by military men in France, it may be mentioned that one of the competitors at this memorable flying meeting was the French officer whose work has previously been mentioned—Captain Ferber. He flew a Voisin biplane. It was not, unfortunately, very long after the Rheims meeting that this enthusiastic military airman met with his death at Boulogne, his loss being sincerely mourned by the French Government. His biplane overturned in a ditch, and he was killed by the heavy motor, which was torn from its bed, and fell upon him.

III. Aeroplanes at Rheims, 1909—Wright, Voisin, Farman, Blériot,
Antoinette—The Gnome engine—First military orders.

Seeing that the Rheims meeting of 1909 was the first occasion upon which a definite military inspection of aeroplanes was made, it should be interesting to describe the machines which were then available. Let us take, for example, the Wright biplane, of which we have previously spoken. This machine, as piloted at Rheims by Lefevre, Tissandier, and the Comte de Lambert, undoubtedly proved itself one of the best all-round machines then in existence.

The aeroplane represented the usual biplane form of building, having one sustaining plane fixed above another, the two being held apart by wooden struts, made taut by cross-wiring.

In front of these main-planes, upon outriggers, was a small double-plane elevator. At the rear of the main-planes, also carried upon outriggers, was a double-plane vertical rudder. The engine of the machine, set upon a wooden bed on the lower plane, actuated two wooden propellers, which—driven by chains—revolved in opposite directions behind the main-planes.

The pilot’s seat was on the front edge of the lower main-plane, and his control of the aeroplane, when in flight, was effected by means of two levers. One, moved forward and backward, actuated the elevating planes, and the other was given a dual motion. Moved to and fro, it operated the rudder of the aeroplane. Shifted from side to side, it warped the rear extremities of the main-planes, and so controlled the lateral stability of the aeroplane.

This wing-warping mechanism was, as a matter of fact, one of the salient features of the Wright biplane. The system is considered to be the most efficacious method of combating the effect of wind-gusts when an aeroplane is in flight.