points and irregular peaks; and I have seen, in crossing the Alps, and the Apennine mountains, that the angles are, in fact, correspondent; but it is almost impossible to judge by the eye of the equality or inequality in the height of opposite mountains, because their summits are lost in mists and clouds.

The different strata of which the earth is composed are not disposed according to their specific weight, for we often find strata of heavy matters placed on those of lighter. To be assured of this, we have only to examine the earth on which rocks are placed, and we shall find that it is generally clay or sand, which is specifically lighter. In hills, and other small elevations, we easily discover this to be the case; but it is not so with large mountains, for not only their summits are rocks, but those rocks are placed on others; there mountains are placed upon mountains, and rocks upon rocks, to such a considerable height, and through so great an extent of country, that we can scarcely be certain whether there is earth at bottom, or of what nature it is. I have seen cavities made in rocks to some hundred feet deep, without being able to form an idea where they ended, for these rocks were supported by others;

nevertheless, may we not compare great with small? and since the rocks of little mountains, whose bases are to be seen, rest on the earth less heavy and solid than stone, may we not suppose that earth is also the base of high mountains? All that I have here to prove by these arguments is, that, by the motion of the waters, it may naturally happen that the more ponderous matters accumulated on the lighter; and that, if this in fact is found to be so in most hills, it is probable that it happened as explained by my theory; but should it be objected that I am not grounded in supposing, that before the formation of mountains the heaviest matters were below the lighter; I answer, that I assert nothing general in this respect, because this effect may have been produced in many manners, whether the heaviest matters were uppermost or undermost, or placed indiscriminately. To conceive how the sea at first formed a mountain of clay, and afterwards capt it with rocks, it is sufficient to consider the sediments may successively come from different parts, and that they might be of different materials. In some parts, the sea may at first have deposited sediments of clay, and the waters afterwards brought sediment of strong matter, either

because they had transported all the clay from the bottom and sides, and then the waves attacked the rocks, possibly because the first sediment came from one part, and the second from another. This perfectly agrees with observation, by which we perceive that beds of earth, stone, gravel, sand, &c. followed no rule in their arrangement, but are placed indifferently one on the other as it were by chance.

But this chance must have some rules, which can be known only by estimating the value of probabilities, and the truth of conjectures. According to our hypothesis, on the formation of the globe, we have seen that the interior part of the globe must have been a vitrified matter, similar to vitrified sand, which is only the fragments of glass, and of which the clays are perhaps the scoria; by this supposition, the centre of the earth, and almost as far as the external circumference, must be glass, or a vitrified matter; and above this we shall find sand, clay, and other scoria. Thus the earth, in its first state, was a nucleus of glass, or vitrified matter; either massive like glass, or divided like sand, because that depends on the degree of heat it has undergone. Above this matter was sand, and lastly clay. The soil of the

waters and air produced the external crust, which is thicker or thinner, according to the situation of the ground; more or less coloured, according to the different mixtures of mud, sand, clay, and the decayed parts of animals and vegetables; and more or less fertile, according to the abundance or want of these parts. To shew that this supposition on the formation of sand and clay is not chimerical, I shall add some particular remarks.

I conceive, that the earth, in its first state, was a globe, or rather a spheroid of compact glass, covered with a light crust of pumice stone and other scoria of the matter in fusion. The motion and agitation of the waters and air soon reduced this crust into powder or sand, which, by uniting afterwards, produced flints, and owe their hardness, colour, or transparency and variety, to the different degrees of purity of the sand which entered into their composition.

These sands, whose constituting parts unite by fire, assimilate, and become very dense, compact, and the more transparent as the sand is more pure; on the contrary, being exposed a long time to the air, they disunite and exfoliate, descend in the form of earth, and it is probable

the different clays are thus produced. This dust, sometimes of a brightish yellow, and sometimes like silver, is nothing else but a very pure sand somewhat perished, and almost reduced to an elementary state. By time, particles will be so far attenuated and divided, that they will no longer have power to reflect the light, and acquire all the properties of clay.

This theory is conformable to what every day is seen; let us immediately wash sand upon its being dug, and the water will be loaded with a black ductile and fat earth, which is genuine clay. In streets paved with freestone, the dirt is always black and greasy, and when dried appears to be an earth of the same nature as clay. Let us wash the earth taken from a spot where there are neither freestone nor flints, and there will always precipitate a great quantity of vitrifiable sand.