CHAPTER II

INTELLIGENCE AND "END"

It is interesting to notice the opinions of different scientists and philosophers as to the extent to which reason is diffused in the universe, where the point lies at which the boundary line is to be drawn between reason and an automatism of instinct or organic action, or whether any such point can be found at all, whether reason, at least as consciousness and will, is not inherent in all life, or at least in all animal life, or whether it is not, indeed, to be regarded as the cause of motion even outside life, in the inorganic as well as the organic. There is no need to remind ourselves of the philosophic conception of the World as Will, the Philosophy of the Unconscious, or the Theory of Monads. The theories that specialists in physical science have arrived at, through the results of wide-reaching investigations in their own peculiar branch, are as various as those of philosophers. Darwin carefully avoids drawing any distinct limit-line between reason and instinct, but remarks that "A little dose of judgment or reason, as Pierre Huber expresses it, often comes into play, even with animals low in the scale of nature."[112] Haeckel says: "Unbiassed comparison and unprejudiced test and observation place it beyond doubt that so-called 'instinct' is nothing else than a sum of soul-activities which, originally acquired by adaptation, have been fixed by habit and carried down from generation to generation by inheritance. Originally performed with consciousness and reflection, many instinctive actions of the animals have become, in the course of time, unconscious, exactly as is the case with the habitual activities of human reason. These, too, may, with like justice, be looked upon as the workings of innate instinct, as, indeed, the impulse to self-preservation, maternal love, and the social instinct often are regarded. Again, instinct is neither distinctively an attribute of the brain of the animal, nor is the reason an especial endowment of human beings. On the contrary, an impartial doctrine of soul recognizes a long, long, descending scale of gradual evolution in the life of the soul, which leads from higher to lower human beings, from more perfect to more imperfect animals, step by step, down to those forms whose simple nerve-ganglion furnishes the starting-point of all the cell-less brain-forms of this scale."[113] The lecture in which this passage occurs not only argues further that the soul is composed of soul-activities as the brain is composed of cells, but finds in all living cells, "all protoplasm, the first element of all soul life, sensation in the simple forms of pain and pleasure, movement in the simple forms of attraction and repulsion. Only the degrees of development and combination of soul are different in different beings." Du Prel, impressed with the evolution of order from disorder in the heavens as on the earth, ascribes this to universal sensation as a fundamental quality of all matter, which makes it continually tend towards a state of equilibrium in which collision is reduced to a minimum.[114] Some biologists ascribe sensation, or consciousness, to animal life alone; some ascribe consciousness to such animals only as possess a nervous system; some philosophers make a distinction between sensation, consciousness, and self-consciousness, as shown in the scale of animal life; some, again, approaching the problem from another side, lay emphasis on the difference between automatic and organic action, instinct, "blind impulse," and will. Carneri, as we have seen,[115] holds that even the action of an animal so high in the scale as the butterfly may be pure automatism, its fluttering when impaled merely the motion of a continued attempt at flight.

These differences in opinion seem to depend, in great measure, upon the end of the scale of being chosen as the starting-point in the development of theory. If we begin with man and assume intelligence to be the cause of design,—of the purposeful, the self-preserving,—in his action, we shall be likely to infer intelligence as the cause of self-preserving function in all animals, and we shall find great difficulty in drawing any distinct line between intelligence and automatism. If we are not students of inorganic nature, the evolution to be found also in it, up to the attainment of preservative forms of motion, may escape our observation, preoccupation with man and the self- or rather human-interested bias of observation blinding us to it; but if we carry our considerations, in an unprejudiced spirit, on beyond the province of life, we may, like Du Prel and others, arrive at a theory of intelligence as a universal property of matter. On the other hand, if we begin with inorganic matter and assume automatism to be the cause of its motion, we are likely, ascending the scale of organic existence, to interpret much of its function as due to material action and reaction, and may again, from this side, find so great difficulty in drawing the line where intelligence begins, that we may fall, as Carneri has done, into the opposite extreme to that last noticed, and interpret nearly all animal action as unintelligent or even insentient.

Let us look at the dilemma a little more closely. Might it not seem, from one point of view, as if the harmonious movements of the stars, by which they avoid their own destruction, must be referred to desire and will to avoid it? If all systems of material parts, without exception or distinction, tend, as Fechner, Du Prel, and Petzoldt assert, towards harmony of the parts such that the motion of these parts will become self-preservative, does it not seem logically necessary to assume that this self-preservation, arising in inorganic matter in the same manner as in organic matter, must be due to the same causes as those to which we ascribe action towards an end, action that involves self-preservation, in the broadest sense of the word, in man? May not the heavenly bodies, learning from experience in some way, as man does, gradually come to choose, though still in accordance with natural laws (as man also invariably chooses) that orbit which preserves them from collision? True, they must finally suffer destruction, but so, also, must the human individual, and the race of human beings. The difference of evolution and dissolution in the two cases is only one of time. Among different species of nervously organized beings, the duration of life also differs. Or, if we deny the existence of intelligence in inorganic nature, can we, at least, descending the scale of organic being, find any point of which we can say, "Here intelligence ends and automatism begins"? Shall we deny the existence of intelligence in plants, and if so, how shall we find that dividing line between the plant and animal kingdoms which the advancement of science in many directions is rendering, not more distinct, but less and less so? G. Th. Schneider says, in his book on "The Human Will": "The movements of touch and locomotion in the search for food are the first movements in which the specific animal-life may be recognized. In no plant is the groping caused by hunger to be observed."[116] But is this true? The insectivorous plants, for instance, open their leaves when their prey is digested, waiting for fresh prey; and they close them again when prey has again entered, thus practically grasping their victim and holding him fast. Although the nature of the plant prevents its moving from the spot where it grows, are these movements less a search for and capture of food than those of the animal? To say that the closing of the leaves depends upon the beginning of some chemical process in the plant furnishes us with no mark of distinction between the two, for it is equally true that chemical processes underlie animal motion; and to object that the reopening of the leaves is the result of the completion of assimilation gives us, also, no distinctive mark, since the animal's search for food is likewise the result of hunger and so connected with a particular state of the digestive organs. The action of insectivorous plants draws our attention because the process of assimilation involved so resembles animal digestion; but, as a point of fact, the opening of petals to receive the air and sun is as much a search for food as the opening of leaves to receive insect prey.

Schneider adds to the passage above quoted, "A further difference between psychical and physiological movements is this, that the latter always remain the same, however the excitation changes, while the former have, now the character of attraction, now that of repulsion." It may be questioned whether this difference either can be demonstrated to be a distinctive mark. We have only to go into a dark cellar where the potatoes have begun to sprout, in order to see how plants that ordinarily grow upward will take every curve and angle in order to reach towards the light of some distant window. And if we turn one of the tubers about, we may watch the pallid sprout again turn to grow towards the far-away sunlight. Thomas A. Knight relates experiments in which plants of the Virginia creeper (Ampelopsis quinquefolia) were removed from one side of the house to the other, being, in each case, screened from perpendicular rays of the sun, and records that, in all cases, the tendrils turned in a few hours in a direction pointing to the centre of the house. One plant after being thus experimented with, was "removed to the centre of the house and fully exposed to the perpendicular light of the sun; and a piece of dark-colored paper was placed upon one side of it, just within reach of its tendrils; and to this substance they soon appeared to be strongly attracted. The paper was then placed upon the opposite side, under similar circumstances, and a piece of plate glass was substituted; but to this substance the tendrils did not indicate any disposition to approach. The position of the glass was then changed, and care was taken to adjust its surface to the varying position of the sun, so that the light reflected might continue to strike the tendrils; which then receded from the glass, and appeared to be strongly repulsed by it."[117] Darwin writes of the insectivorous Drosera rotundifolia: "If young and active leaves are selected, inorganic particles not larger than the head of a small pin, placed on the central glands, sometimes cause the outer tentacles to bend inwards. But this follows much more surely and quickly, if the object contains nitrogenous matter which can be dissolved by the secretion. On one occasion, I observed the following unusual circumstance. Small bits of raw meat (which acts more energetically than any other substance), of paper, dried moss, and of the quill of a pen, were placed on several leaves, and they were all embraced equally well in about two hours. On other occasions the above-named substances, or more commonly particles of glass, coal-cinder (taken from the fire), stone, gold-leaf, dried grass, cork, blotting paper, cotton-wool, and hair rolled into little balls, were used, and these substances, though they were sometimes well embraced, often caused no movement whatever in the outer tentacles, or an extremely slight and slow movement. Yet these same leaves were proved to be in an active condition, as they were excited to movement by substances yielding nitrogenous matter, such as bits of raw or roast meat, the yolk or white of boiled eggs, fragments of insects of all orders, spiders, etc. I will give only two instances.

"Minute flies were placed on the discs of several leaves, and on others balls of paper, bits of moss and quill of about the same size as the flies, and the latter were well embraced in a few hours; whereas after twenty-five hours only a very few tentacles were inflected over the other objects. The bits of paper, moss, and quill were then removed from these leaves, and bits of raw meat placed on them; and now all the tentacles were soon energetically inflected.

"Again, particles of coal-cinder (weighing rather more than the flies used in the last experiment) were placed on the centres of three leaves: after an interval of nineteen hours, one of the particles was tolerably well embraced; a second by a very few tentacles; and a third by none. I then removed the particles from the two latter leaves, and put on them recently killed flies. These were fairly well embraced in seven and one-half hours, and thoroughly after twenty and one-half hours; the tentacles remaining inflected for many subsequent days. On the other hand, the one leaf which had in the course of nineteen hours embraced the bit of cinder moderately well, and to which no fly was given, after an additional thirty-three hours (i.e. in fifty-two hours from the time when the cinder was put on) was completely reëxpanded and ready to act again."[118]

From these and many other experiments Darwin concludes that inorganic and some organic substances not attacked by the secretion of the leaf act much less quickly and efficiently than organic substances yielding soluble matter, which is absorbed.