In the latter part of the eighteenth century the farmers of Massachusetts had flocks of ordinary sheep on their farms. These sheep were continually jumping fences and getting on neighboring farms. They were the source of many disputes and much irritation between neighboring farmers. Finally, one of the sheep had a lamb which, when grown, displayed well-marked peculiarities (a sport). It had a longer body than the ordinary sheep and shorter legs, which were bowed. It was noticed that this sheep could not get over the fences. The cute Yankee farmer, noticing this valuable peculiarity, carefully preserved this peculiar sheep, and from it was ultimately derived, by careful selective breeding, a special variety known as the Ancon sheep.

The germinal variations resulting from the mixing of two separate hereditary masses by impregnation find their expression in the most varied qualities of the minds and bodies of developing children. If the variations are not especially marked, they are looked upon as normal and attract no special attention.

But if the variations are so pronounced as to compel attention, and at the same time it is known that they are useful, they are spoken of as talents, or, on the other hand, if they are harmful or useless, they are designated as pathological or monstrosities.

These are truly what the biologists call sports; and to those classes of sports that occur as specially gifted in human culture, in the varied fields of science, art, or literature, we assign such a person as Shakespeare, and call the remarkable variations embodied in him genius. On the other hand, such variations as lead to certain forms of pigmentary degeneration of the retina, and to Daltonism, to dyschromatopsia and achromatopsia, to certain supernumerary glands, polydactylism, and such like, which are either useless or harmful, we designate as pathological cases or monstrosities.

Hereditary units (the carriers of heritages) may be latent—that is, they may appear late in life, or in the offspring, or, still again, in remote descendants; in the latter cases the heritages are spoken of as reversional or atavistic. Latent hereditary units may very usefully be compared to dormant seeds buried in the ground. It is stated that buried seeds may lie dormant for many years, so that when a plot of ground is plowed deeply and upturned, plants that have not been seen there within the memory of one will often make their appearance and flourish. The hereditary units are veritable living seeds, that, under certain and often unknown stimuli, grow and unfold their heritages as do the buried seeds.

Latent heritages are well illustrated by a study of secondary sexual characters as developed at puberty.

Among our barnyard fowls, the hens often, when they have atrophy or degeneration of the ovaries, although up to this time they have laid eggs for years, stop this function, put aside the plumage and appearance proper to their sex, and don more or less completely the garments of the rooster. Thus females have latent in them many secondary sexual characters of the male. For similar reasons the male develops, occasionally, female characters.

This latency is illustrated again in deer. In most species of the deer tribe the males alone possess antlers, yet it is a well-known circumstance that in females with degenerations of the ovaries rudimentary horns that are never shed appear. A study of congenital color-blindness illustrates beautifully latent heritages, showing how the females of one generation may be free from the malady and the males of the next afflicted.

A study of the regeneration of lost parts in various animals and plants illustrates well the latency of many hereditary units. A cutting made from the willow and planted sends out roots and finally reaches the dimensions of the adult tree. Here the body cells of the stem evidently contained, in a latent condition, many hereditary units in their nuclei, which became active through the special stimulus of being planted as a cutting. Adult plants can be raised from the cuttings of many other plants.

If the garden worm is cut in two, the head-part will reproduce the tail-portion. If the little fresh-water polyp, Hydra, be cut into a number of pieces, each segment will reproduce a perfect animal. Many lizards, after losing their tails by violence, manufacture new tails through the agency of the latent hereditary units contained in the body cells of the stump left. If the tentacle or “horn” of a snail, which contains an eye with a perfect lens and retina, be cut off, the animal can reproduce another one with a perfect eye, and this can be repeated a number of times. Often newts, when fighting with one another, or lobsters when fighting, lose a leg or a claw. These highly organized animals have the power of creating new limbs, making bones, ligaments, muscles, nerves, cuticle, and so on. All of this is done through the hereditary masses in the nuclei of the body cells at the site of the injury.