It was natural that numbers be associated with sex. The calendar was related to the seasons and the bearing of young. The number three, for example, took on mystic and potent connotation, representing as it did man’s genitals. Indeed, numbers themselves came quaintly to have sex. One, three, and the other odd numbers were male; the symmetrical, even numbers logically were female.

The notion that man used the decimal system because of his ten fingers and toes is general, but it was some time before this refinement took place. Some early peoples clung to a simpler system with a base of only two; and interestingly a tribe of Australian aborigines counts today thus: enea (1), petchaval (2), enea petchaval (3), petchaval petchaval (4). Before we look down our noses at this naïve system, let us consider that high-speed electronic computers use only two values, 1 and 0.

But slowly symbols evolved for more and more numbers, numbers that at first were fingers, and then perhaps knots tied in a strip of hide. This crude counting aid persists today, and cowboys sometimes keep rough tallies of a herd by knotting a string for every five that pass. Somehow numbers took on other meanings, like those that figure in courtship in certain Nigerian tribes. In their language, the number six also means “I love you.” If the African belle is of a mind when her boyfriend tenderly murmurs the magic number, she replies in like tone, “Eight!”, which means “I feel the same way!”

From the dawn of history there have apparently been two classes of us human beings, the “haves” and the “have nots.” Nowadays we get bills or statements from our creditors; in early days, when a slate or clay tablet was the document, a forerunner of the carbon copy or duplicate paper developed. Tallies were marked for the amount of the debt, the clay tablet was broken across the marks, and creditor and debtor each took half. No chance for cheating, since a broken half would fit only the proper mate!

Numbers at first applied only to discrete, or distinctly separate, things. The scratches on a calendar, the tallies signifying the count of a flock; these were more easily reckoned. The idea of another kind of number inspired the first clocks. Here was a monumental breakthrough in mathematics. Nature provided the sunrise that clearly marked the beginning of each day; man himself thought to break the day into “hours,” or parts of the whole. Such a division led eventually to measurement of size and weight. Now early man knew not only how many goats he had, but how many “hands” high they were, and how many “stones” they weighed. This further division ordained another kind of mechanical computer man must someday contrive—the analog.

The first counting machines used were pebbles or sea shells. For the Stone Age businessman to carry around a handful of rocks for all his transactions was at times awkward, and big deals may well have gone unconsummated for want of a stone. Then some genius hit on the idea of stringing shells on a bit of reed or hide; or more probably the necklace came first as adornment and the utilitarian spotted it after this style note had been added. At any rate, the portable adding machine became available and our early day accountant grew adroit at sliding the beads back and forth on the string. From here it was only a small step, taken perhaps as early as 3000 B.C., to the rigid counter known as the abacus.

The word “counter” is one we use in everyday conversation. We buy stock over the counter; some deals are under the counter. We all know what the counter itself is—that wide board that holds the cash register and separates us from the shopkeeper. At one time the cash register was the counter; actually the counting board had rods of beads like the abacus, or at least grooves in which beads could be moved. The totting up of a transaction was done on the “counter”; it is still there although we have forgotten whence came its name.

The most successful computer used for the next 5,000 years, the portable counter, or the abacus, is a masterpiece of simplicity and effectiveness. Though only a frame with several rows of beads, it is sophisticated enough that as late as 1947 Kiyoshi Matsuzake of the Japanese Ministry of Communications, armed with the Japanese version—a soroban, bested Private Tom Wood of the U. S. Army of Occupation punching the keys of an up-to-the-minute electric calculating machine in four of five problem categories! Only recently have Japanese banks gone over to modern calculators, and shopkeepers there and in other lands still conduct business by this rule of thumb and forefinger.

The abacus, ancient mechanical computer, is still in use in many parts of the world. Here is the Japanese version, the soroban, with problem being set up.