Butler envisioned the day when the present rude cries with which machines call out to one another will have been developed to a speech as intricate as our own. After all, “... take man’s vaunted power of calculation. Have we not engines which can do all manner of sums more quickly and correctly than we can? What prizeman in Hypothetics at any of our Colleges of Unreason can compare with some of these machines in their own line?”

Noting another difference in man and his creation, Butler says,

... Our sum-engines never drop a figure, nor our looms a stitch; the machine is brisk and active, when the man is weary, it is clear-headed and collected, when the man is stupid and dull, it needs no slumber.... May not man himself become a sort of parasite upon the machines? An affectionate machine-tickling aphid?

It can be answered that even though machines should hear never so well and speak never so wisely, they will still always do the one or the other for our advantage, not their own; that man will be the ruling spirit and the machine the servant.... This is all very well. But the servant glides by imperceptible approaches into the master, and we have come to such a pass that, even now, man must suffer terribly on ceasing to benefit the machines. If all machines were to be annihilated ... man should be left as it were naked upon a desert island, we should become extinct in six weeks.

Is it not plain that the machines are gaining ground upon us, when we reflect on the increasing number of those who are bound down to them as slaves, and of those who devote their whole souls to the advancement of the mechanical kingdom?

Butler considers the argument that machines at least cannot copulate, since they have no reproductive system. “If this be taken to mean that they cannot marry, and that we are never likely to see a fertile union between two vapor-engines with the young ones playing about the door of the shed, however greatly we might desire to do so, I will readily grant it. [But] surely if a machine is able to reproduce another machine systematically, we may say that it has a reproductive system.”

Butler repeats his main theme. “... his [man’s] organization never advanced with anything like the rapidity with which that of the machine is advancing. This is the most alarming feature of the case, and I must be pardoned for insisting on it so frequently.”

Then there is a startlingly clear vision of the machines “regarded as a part of man’s own physical nature, being really nothing but extra-corporeal limbs. Man ... as a machinate mammal.” This was feared as leading to eventual weakness of man until we finally found “man himself being nothing but soul and mechanism, an intelligent but passionless principle of mechanical action.” And so the Erewhonians in self-defense destroyed all inventions discovered in the preceding 271 years!

Early Mechanical Devices

During the nineteenth century, weaving was one of the most competitive industries in Europe, and new inventions were often closely guarded secrets. Just such an idea was that of Frenchman Joseph M. Jacquard, an idea that automated the loom and would later become the basis for the first modern computers. A big problem in weaving was how to control a multiplicity of flying needles to create the desired pattern in the material. There were ways of doing this, of course, but all of them were unwieldy and costly. Then Jacquard hit on a clever scheme. If he took a card and punched holes in it where he wanted the needles to be actuated, it was simple to make the needles do his bidding. To change the pattern took only another card, and cards were cheap. Patented in 1801, there were soon thousands of Jacquard looms in operation, doing beautiful and accurate designs at a reasonable price.