Shannon’s work and the thinking of others in the field indicated the power of the digital, yes-no, approach. A single switch can only be on or off, but many such switches properly interconnected can do amazing things. At first these switches were electromechanical; in the Eckert-Mauchly ENIAC, completed for the government in 1946, vacuum tubes in the Eccles-Jordan “flip-flop” circuit married electronics and the computer. The progeny have been many, and their generations faster than those of man. ENIAC has been followed by BINAC and MANIAC, and even JOHNNIAC. UNIVAC and RECOMP and STRETCH and LARC and a whole host of other machines have been produced. At the start of 1962 there were some 6,000 electronic digital computers in service; by year’s end there will be 8,000. The golden age of the computer may be here, but as we have seen, it did not come overnight. The revolution has been slow, gathering early momentum with the golden wheels of Homer’s mechanical information-seeking vehicles that brought the word from the gods. Where it goes from here depends on us, and maybe on the computer itself.


Theory is the guide to practice, and practice is the ratification and life of theory.

—John Weiss

3: How Computers Work

In the past decade or so, an amazing and confusing number of computing machines have developed. To those of us unfamiliar with the beast, many of them do not look at all like what we imagined computers to be; others are even more awesome than the wildest science-fiction writer could dream up. On the more complex, lights flash, tape reels spin dizzily, and printers clatter at mile-a-minute speeds. We are aware, or perhaps just take on faith, that the electronic marvel is doing its sums at so many thousand or million per second, cranking out mathematical proofs and processing data at a rate to make mere man seem like the dullest slowpoke. Just how computers do this is pretty much of a mystery unless we are of the breed that works with them. Actually, in spite of all the blurring speed and seeming magic, the basic steps of computer operation are quite simple and generally the same for all types of machines from the modestly priced electromechanical do-it-yourself model to STRETCH, MUSE, and other ten-million-dollar computers.

It might be well before we go farther to learn a few words in the lexicon of the computer, words that are becoming more and more a part of our everyday language. The following glossary is of course neither complete nor technical but it will be helpful in following through the mechanics of computer operation.

COMPUTER DICTIONARY

Access Time—Time required for computer to locate data and transfer it from one computer element to another.

Adder—Device for forming sums in the computer.