We have talked of the analog and the digital; there remains a further classification that should be covered. It is the result of a marriage of our two basic types, a result naturally hybrid. The analog-digital computer is third in order of importance, but important nonetheless.
Minneapolis-Honeywell
Nerve center of Philadelphia Electric Company’s digital computer-directed automatic economic dispatch system is this console from which power directors operate and supervise loading of generating units at minimum incremental cost.
Necessity, as always, mothered the invention of the analog-digital machine. We have talked of the relative merits of the two types; the analog is much faster on a complex problem such as solving simultaneous equations. The digital machine is far more accurate. As an example, the Psychological Matrix Rotator described earlier could solve its twelve equations practically instantaneously. A digital machine might take seconds—a terribly long time by computer standards. If we want an accurate high-speed differential analyzer, we must combine an analog with a digital computer.
Because the two are hardly of the same species, this breeding is not an easy thing. But by careful study, designers effected the desired mating. The hybrid is not actually a new type of computer, but two different types tied together and made compatible by suitable converters.
The composite consists of a high-speed general-purpose digital computer, an electronic analog computer, an analog-to-digital converter, a digital-to-analog and a suitable control for these two converters. The converters are called “transducers” and have the ability of changing the continuous analog signal into discrete pulses of energy, or vice versa.
Sometimes called digital differential analyzers, the hybrid computers feature the ease of programming of the analog, plus its speed, and the accuracy and much broader range of the digital machine. Bendix among others produced such machines several years ago. The National Bureau of Standards recently began development of what it calls an analog-digital differential analyzer which it expects to be from ten to a hundred times more accurate than earlier hybrid computers. The NBS analyzer will be useful in missile and aircraft design work.
Despite its apparent usefulness as a compromise and happy medium between the two types, the hybrid would seem to have as limited a future as any hybrid does. Pure digital techniques may be developed that will be more efficient than the stopgap combination, and the analog-digital will fall by the wayside along the computer trail.
Summary
Historically, the digital computer was first on the scene. The analog came along, and for a time was the more popular for a variety of reasons. One of these was the naïve, cumbersome mode of operation the digital computer is bound to; another its early lack of speed. Both these drawbacks have been largely eliminated by advances in electronics, and apparently this is only the beginning. In a few years the technology has progressed from standard-size vacuum tubes through miniature tubes and the shrinking of other components, to semiconductors and other tinier devices, and now we have something called integrated circuitry, with molecular electronics on the horizon. These new methods promise computer elements approaching the size of the neurons in our own brains, yet with far faster speed of operation.