The System Development Corporation designed and IBM built the SAGE computer, a computer already old-fashioned since it uses vacuum tubes instead of the newer transistor devices. Despite this shortcoming, it does a fantastic job of tracking all the aircraft and missiles in its ken, labeling them for speed, heading, altitude, as well as the vital information of friend or foe, and continuously plans a defense. Since it can monitor civilian traffic as well, SAGE may one day take over control of that too. Thus the money spent will yield a bonus in addition to the protection SAGE has already afforded in its military role.
The Air Force uses airborne computers by the thousands. Indeed, the need for small lightweight computers for applications in aircraft led to early work in the miniaturization of components that made possible tiny computers for missile and space use. Small digital computers were built for “drone” aircraft navigation; now more advanced computers provide “air data,” air-speed, altitude, flight attitude, pressure, and other information.
Other Air Force computers, used in BMEWS radar, take the place of human observers. These smart computers can recognize radar tracks that are potential missile trajectories, discriminate among these tracks to select hostile trajectories, and project them to impact points and times. Called MIPS, for Missile Impact Predictor Set, the computer takes over from its human forerunner who just can’t seem to perform the 200,000 operations a second required to do the job.
Another space-tracking computer called SPADATS has been installed at NORAD Combat Operations Center at Colorado Springs. This computer has the assignment of around-the-clock cataloging of all man-made objects in space, a sizable and growing task. At Vandenberg Air Force Base, the Air Force maintains an EDP, or Electronic Data Processing project with a more earth-bound job of cataloging. Started back in 1957, this project has as its primary task the efficient allocation of manpower for the global Strategic Air Command team.
At nearby Edwards Air Force Base, an IBM 7090 computer is helping to develop the Dyna-Soar manned space glider. This computer is also doing work for the X-15 program, and research on fuels, lunar probes, rocket nozzles, and nose cones. At Tinker Air Force Base in Oklahoma, a new system of keeping track of jet engine parts, so that they go back on the proper engine, uses a recorder “gun” wired to a central control computer. Engine parts are metal tagged with coded letters which the recorder “reads” and transmits to the computer for filing.
Computers play a big part in the “largest and most sophisticated logistic data and message communications system in the world.” Delivered to the Air Force in January of 1962, “Comlognet” connects 450 different air bases and other installations. This system started out modestly, handling about 10 million punched cards a day, and is heralded as only a forerunner of an automatic system which will some day take care of the complete interflow of data among widely separated military and civilian locations.
Besides being part of complex navigation and bombing systems, computers help the Air Force to score the results of practice bombing missions. Computers control the launching of Sidewinder missiles from aircraft and also permit accurate “toss-bombing” of nuclear payloads from fighter bombers. These computers do all the mathematics and let the pilot approach his target from any direction, at any speed and altitude. The new Skybolt ballistic missile, launched from the B-52 bomber, has its own guidance computer, which is actually a digital differential analyzer, a hybrid device like that described in an earlier chapter. One of the largest single computers in the Air Force is that called Finder. Using 70,000 transistors, it does analytical work on electronic countermeasures.
Today there are some 110,000 aircraft flying the skies in this country, about double the number ten years ago. Not only the quantity but also the speed of aircraft has increased, and the job of the aircraft controller has become a nightmare. With the lives of air travelers in his hands, this overworked FAA employee has until recently used the same equipment that served in the days of 180 miles-per-hour piston-engine transports.
We have discussed some examples of the computer as a director of air traffic; the automatic ground-controlled-approach system that lands planes in bad weather without human help is one, the mighty SAGE defense system is another. SAGE may one day take over commercial air traffic: in the meantime, the Federal Aviation Agency relies heavily on smaller computers in locations all over the country.
Originally, general-purpose business computers were put to work processing the vast quantities of data needed to keep traffic flowing along the airways. New, special designs, including those of the Librascope Division of General Precision, Inc., are being added as they become available. Remington Rand UNIVAC is also working on the problem, and UNIVAC equipment has been tested on Strategic Air Command round-robin flights. It has posted as many as eighty in-flight Axes for one mission, a feat that the unaided human controller can only gasp at.