Not just the mechanics of transmitting the commercials on TV, but even the billing and other accounting functions are a major computer project. To handle close to $700 million a year in payments, an IBM 7090 computer is being used. There are more than 5,000 TV stations in the country, with billings dependent on a complicated structure of 180 different rates. As a result, there is an undesirable lag in payment. Putting records on tape and feeding them to the computer is expected to clear up the trouble and provide a bonus in the form of advising stations on discount rates for programming on a current basis.
The computer isn’t content with skirting the edges of the advertising game, of course. A heated battle is going on now in this industry over the growing use of the computer to plan campaigns and actually evaluate ads, a task held by some to be the exclusive domain of the human adman with his high creative ability. The Industrial Advertising Research Institute triggered the fight by using a computer to study 1,130 advertisements appearing in the industrial journal Machine Design and select the best black-and-white and the best color ads.
While diehards snorted ridicule, the computer made its choices. IARI then compared its selections with those made by two of the largest and most experienced rating firms. On color ads, the computer scored 66 per cent, rating two out of three ads practically the same as the human selectors. With black-and-white it did even better, scoring 71 per cent. Its detractors, assuming of course that the human raters were infallible, gloated that the computer was a flop, that it could pick only the average ads accurately and fell down on excellent and poor ones.
The agency of Batten, Barton, Durstine & Osborn thought otherwise and is using the computer in its advertising. As a tool for media selection and scheduling, BBDO likened the computer to a power shovel instead of a spade. The new method makes it possible to compare thousands of combinations a second. Another firm, the Simulmatics Corporation, agrees with BBDO. The computer, it says, will permit advertising campaigns far more effective than those waged at present, since the most efficient campaign may be too complex to be devised without artificial aid. The key to the Simulmatics system is the “media mix model” in which a hypothetical campaign can be tried out in advance in the computer.
Young & Rubicam differs hotly with computer advocates. A spokesman leveled a low blow at the computer, suggesting that it will have difficulties forming motivational research based on Freudian analyses! The firm says no way has yet been found to transpose “Viennese fatuities” into Arabic numerals. It deplores the turning of a media-planner into a rubber stamp as media selection becomes an automatic reiteration which “those with an abacus could pipe to a stale and sterile tune.” The battle rages, but the outcome seems to be a foregone conclusion. Either the computer will sway Madison Avenue from Viennese fatuities, or it will learn about sex.
Industry
We have discussed the computer in business; perhaps it would be well to stress that this includes industry as well. The computer not only functions in the bank and brokerage house, insurance office, and supermart, but also is found increasingly in jobs with oil refineries, chemical plants, surveying teams, knitting mills (a likely application when we remember Jacquard), and steel mills. As automation takes over factories, it brings the computer with it to plan and operate the new production methods. Transportation too is making good use of the computer. Freight-handling in the United States, Canada, England, and the U.S.S.R. is using machine techniques.
Our high-speed airplanes are already more aimed than flown, and less and less seen and seen from. Mach-3 aircraft are on the drawing boards now, aircraft that will fly at three times the speed of sound or about 2,000 miles per hour. An airliner taking off from London must already be cleared to land in New York. So authorities on both sides of the ocean are concerned. In England, giant computers like the Ferranti Apollo and others are on order. There is talk in that country too of integrating military and commercial aviation into one traffic control system. In the next ten years the sky population may double again, in addition to flying faster, further crowding the airlanes and particularly the space adjacent to airports. The only solution to this aerial traffic jam lies in the electronic computer.
Not as spectacular as air traffic control, but important nonetheless, is the job of planning the route an airliner will fly. United Air Lines uses a Bendix G-15 to select flight plans for its big DC-8’s. In a manner similar to the NANWEP course-planning described for surface vessels, the computer examines a number of possible routes for the big transports, considering distance flown, wind, temperature, weight and fuel requirements, and time schedules.
This flight-planning was originally done by manual computation and required an hour to work out details for only one possible flight plan. The computer method was demanded because of the increased speed of the big jets and their sensitivities to weather conditions en route. The computer examines a number of tentative plans in minutes and selects the one which will make the optimum use of winds aloft, temperatures, weather, and so on. If weather changes en route require it, the pilot can call the planning center no matter where he is and request that the computer work out a new flight plan.