Mechanization was the first step in that revolution, mechanization being the application of power to supplement the muscles of men. Mass production came along as the second step at the turn of this century. It was simply an organization of mechanized production for faster, more efficient output.

Automation is the latest logical extension of the two earlier steps, made possible by rapid information handling and control. Recent layoffs in industry triggered demonstrations, including television programs, that would indicate we suspect automation of having a rather cold heart. The computer is the heart of automation.

Remington Rand UNIVAC
Control operations require “real-time” computers that perform calculations and make necessary decisions practically instantaneously.

None of these steps is as clear-cut or separate as it may seem without some digging into history and an analysis of what we find. For example, while we generally consider that the loom was simply mechanized during the dawn of industrial revolution, the seeds of computer control were sown by Jacquard with punched-card programming of the needles in his loom. Neither is it sufficient to say that the present spectacle of automated pushbutton machines producing many commodities is no different from the introduction of mass-produced tractors. Tractors, after all, displaced horses; the computer-controlled factory is displacing men who don’t always want to be put out to pasture.

Automation is radically changing our lives. It is to be hoped that intelligent and humane planning will facilitate an orderly adjustment to this change. Certainly workers now toil in safer and pleasanter surroundings. It is reported that smashed toes and feet, hernia, eye trouble, and similar occupational accidents have all but disappeared in automated automobile plants. Unfortunately other occupational hazards are reportedly taking the place of these, and the psychological trauma induced by removal of direct contact with his craft has given more than one worker stomach ulcers. Let us investigate this transfer of contact from man to computer-controlled machine.

A paper presented at the First Congress of the International Federation of Automatic Control, held in Moscow in 1960, uses as its introductory sentence, “Automatic control always involves computing.” The writer then points out that historically the computing device was analog in nature and tied so closely with the measuring and control elements as to be indistinguishable as an actual computer. In more recent history, however, the trend has been to separate the computer. With this trend is another important change, that of using the digital computer in automatic control.

One of the first papers to describe this separate computer function is “Instrument Engineering, Its Growth and Its Promise,” by Brown, Campbell, and Marcy, published in 1949. “Naturally,” the authors state, “a computer will be used to control the process.” Not a shop foreman or an engineer, but a computer. Watt’s “flyball” governor pioneered the field; more recent and more obvious examples of control by computers include ships guided by “Iron Mike” and airplanes flown by the automatic pilot. These were analog devices, and the first use of a digital computer as a control was in 1952, quite recently in our history. This airborne digital control computer was built by Hughes and was called “Digitac.”

Since most industries have been in existence for many years, far antedating aviation, electronics, and the modern computer, the general incorporation of such control has been difficult both because of the physical problem of altering existing machines and the mental phenomenon of inertia. Factory management understandably is slow to adopt a revolutionary technique, and most control systems now in use in industry are still analog in nature. However, where new plants are built from the ground up for computer control, the results are impressive. Designed by United Engineering, the Great Lakes 80-inch hot strip mill automatically processes 25-ton slabs of steel. More than 1,000 variables are controlled, and 200 analog signals and 100 digital computer-generated signals are used in the process. The steel sheets are shot out of the rolls at some 45 miles an hour, or about 66 feet a second! A human supervisor would have a difficult job just watching the several hundred signals related to thickness, temperature, quality, and so on, much less trying to think what to do if he noticed something out of specifications. This would be roughly analogous to an editor trying to proofread a newspaper as it flashes by on the press and making corrections back in the linotype room before any typographical errors were printed. The new computer-controlled mill has an output of about 450,000 tons a month, twice that of the next largest in operation.

American control experts who attended the Moscow conference brought back the information that Russian effort in computer control is greater than that in the United States, and that the Russians are more aware of what we are doing in the field than we are of their progress. Their implementation of modern computer control may be made easier because their industries are newer and do not represent such a long-established and expensive investment in hard-to-modify existing equipment.