Most of these automated factory operations are doing men’s work, but it is only when we see the robot in the shape of ourselves that cold chills invade our spines. Children’s Christmas toys lately have included mechanical men who stride or roll across the floor and speak, act, and even “think” in more or less humanoid fashion, some of them hurling weapons in a rather frightening manner. There is an industrial robot in operation today which may recall the dread of Frankenstein, though its most worried watchers are perhaps union officials. Called Unimate, this factory worker has a single arm equipped with wrist and hand. It can move horizontally through 220 degrees, and vertically for 60 degrees, and extend its arm from 3 feet to 7 feet at the rate of 2-1/2 feet a second. Without a stepladder, it can reach from the floor to a point nearly 9 feet above it. Unimate can pick up 75 pounds, and its 4-inch fingers can clamp together on an iron bar or a tool with a force of up to 300 pounds.
The robot weighs close to a ton and a half, but can be moved from job to job on a fork-lift truck. Its designers have turned up a hundred different jobs that Unimate could do, including material loading, packaging, welding, spray painting, assembly work, and so on. The robot has a memory and can retain the 16,000 “bits” of information necessary for 200 operations. To teach it a new task, it is only necessary to “help” it manually through each step one time. Unimate can be instructed to wait for an external signal during its task, such as the opening of a press or a furnace door.
Advantages of a robot are many and obvious. Pretty girls passing by will not distract it, nor will it require time for lunch or coffee breaks, or trips to the washroom. If necessary it will work around the clock without asking for double power for overtime. High temperatures, noxious gases, flying sparks, or dangerous liquids will not be a severe hazard, and Unimate never gets tired or forgets what it is doing.
But Unimate has some drawbacks that are just as obvious. It can’t tell one color from another, and thus might paint parts the wrong color and never know the difference. It is not readily movable, and not very flexible either. It costs $25,000, and will need about $1,300 in maintenance a year. Some industry spokesmen say that this is far too much, and Unimate has a long way to go before it puts any people out of work. Others say it is a step in the right direction, and this is probably a fair evaluation.
Apparently United States Industries, Inc., whose AutoTutor teaching machines are pacing the field, has made another step in the right direction with its “TransfeRobot 200.” This mechanical assembly-line worker is an “off-the-shelf” item, and currently in use by about fifty manufacturers. TransfeRobot uses its own electronic brain, coupled with a variety of magnetic, mechanical, or even pneumatic fingers to pick up, position, insert, remove, and do other necessary operations on small parts.
Besides these capabilities, TransfeRobot controls secondary operations such as drilling, embossing, stamping, welding, and sealing. It is now busy building things like clocks, typewriters, automobile steering assemblies, and electrical parts. No one-job worker, it can be re-programmed for other operations when a new product is needed, or quickly switched to another assembly line if necessary. Billed as a new hand for industry, TransfeRobot obviously has its foot in the door already. United States Industries estimates current yearly sales of its small automation equipment at about $3 million.
Massachusetts Institute of Technology
Dr. Heinrich Ernst, Swiss graduate student at MIT, watches his computer-controlled “hand” pick up a block and drop it in the box.
The robots in Čapek’s play R.U.R. looked like their human makers, but scientist Claude Shannon is more realistic. “These robots will probably be something squarish and on wheels, so they can move around and not hurt anybody and not get hurt themselves. They won’t look like the tin-can mechanical men in comic strips. But you’ll want them about man-size, so their hands will come out at table-top or assembly-line level.” Since Professor Shannon is the man who sparked the implementation of symbolic logic in computers, his ideas are not crackpot, and the Massachusetts Institute of Technology’s Hand project is a good start toward a real robot. Dr. Heinrich Ernst, a young Swiss, developed Hand with help from Shannon. Controlled by a digital computer, the hand moves about and exercises judgment as it encounters objects. Such research will make true robots of the remotely manipulated machines we have become familiar with in nuclear power experiments, underwater exploration, and so forth. Hughes Aircraft’s “Mobot” is a good example, and it is obvious that the robot’s bones, muscles, and nerves are available. All they need is the brain to match.
While we wait fearfully for more robots which look the way we think robots should, the machine quietly takes over controlling more and more even bigger projects. The computer does a variety of tasks, from the simple one of cutting rolling-mill stock into optimum lengths to minimize waste, to that of running an electronic freight yard in which cars are classified and made up automatically. The computer in this application not only measures the car and weighs it, but also computes its rollability. Using radar as its eyes, the computer gauges the speed and distance between cars as they are being made up and regulates their speed to prevent damaging bumps. To the chagrin of veteran human switchmen, the computer system has proved it can “hump” cars—send them coasting to a standing car for coupling—without the occasional resounding crash caused by excessive speed.