These elements, with the exception of the first, are in reasonable harmony.
14. The Relation of Short-Period Comets to the Zone of Asteroids.
Did comets originate within the solar system, or do they enter it from without? Laplace assigned them an extraneous origin, and his view is adopted by many eminent astronomers. With all due respect to the authority of great names, the present writer has not wholly abandoned the theory that some comets of short period are specially related to the minor planets. According to M. Lehmann-Filhès, the eccentricity of the third comet of 1884, before its last close approach to Jupiter, was only 0.2787.[12] This is exceeded by that of twelve known minor planets. Its mean distance before this great perturbation was about 4.61, and six of its periods were nearly equal to five of Jupiter's,—a commensurability of the first order. According to Hind and Krueger, the great transformation of its orbit by Jupiter's influence occurred in May, 1875. It had previously been an asteroid too remote to be seen even in perihelion. This body was discovered by M. Wolf, at Heidelberg, September 17, 1884. Its present period is about six and one-half years.
The perihelion distance of the comet 1867 II. at its return in 1885 was 2.073; its aphelion is 4.897; so that its entire path, like those of the asteroids, is included between the orbits of Mars and Jupiter. Its eccentricity, as we have seen, is little greater than that of Æthra, and its period, inclination, and longitude of the ascending node are approximately the same with those of Sylvia, the eighty-seventh minor planet. In short, this comet may be regarded as an asteroid whose elements have been considerably modified by perturbation.
It has been stated that the gap at the distance 3.277 is the only one corresponding to the first order of commensurability. The distance 3.9683, where an asteroid's period would be two-thirds of Jupiter's, is immediately beyond the outer limit of the cluster as at present known; the mean distance of Hilda being 3.9523. The discovery of new members beyond this limit is by no means improbable. Should a minor planet at the mean distance 3.9683 attain an eccentricity of 0.3—and this is less than that of eleven now known—its aphelion would be more remote than the perihelion of Jupiter. Such an orbit might not be stable. Its form and extent might be greatly changed after the manner of Lexell's comet. Two well-known comets, Faye's and Denning's, have periods approximately equal to two-thirds of Jupiter's. In like manner the periods of D'Arrest's and Biela's comets correspond to the hiatus at 3.51, and that of 1867 II. to that at 3.277.
Of the thirteen telescopic comets whose periods correspond to mean distances within the asteroid zone, all have direct motion; all have inclinations similar to those of the minor planets; and their eccentricities are generally less than those of other known comets. Have these facts any significance in regard to their origin?
[APPENDIX.]
NOTE A.
THE POSSIBLE EXISTENCE OF ASTEROIDS IN UNDISCOVERED RINGS.
If Jupiter's influence was a factor in the separation of planetules at the sun's equator, may not similar clusters exist in other parts of our system? The hypothesis is certainly by no means improbable. For anything we know to the contrary a group may circulate between Jupiter and Saturn; such bodies, however, could not be discovered—at least not by ordinary telescopes—on account of their distance. The Zodiacal Light, it has been suggested, may be produced by a cloud of indefinitely small particles related to the planets between the sun and Mars. The rings of Saturn are merely a dense asteroidal cluster; and, finally, the phenomena of luminous meteors indicate the existence of small masses of matter moving with different velocities in interstellar space.