Fig. 333.
close together in a continuous hollow cylinder. In the case figured in Fig. [333] Schwendener calculated that the resistance to bending was at least twenty-five times as great as it would have been had the six main bundles been brought close together in a solid core. In many cases the centre of the stem is altogether empty; in all other cases it is filled with soft tissue, suitable for the ascent of sap or other functions, but never such as to confer mechanical rigidity. In a tall conical stem, such as that of a palm-tree, we can see not only these principles in the construction of the cylindrical trunk, but we can observe, towards the apex, the bundles of fibre curving over and intercrossing orthogonally with one another, exactly after the fashion of our stress-lines in Fig. [332]; but of course, in this case, we are still dealing with tensile members, the opposite bundles taking on in turn, as the tree sways, the alternate function of resisting tensile strain[621].
Let us now come, at last, to the mechanical structure of bone, of which we find a well-known and classical illustration in the various bones of the human leg. In the case of the tibia, the bone is somewhat widened out above, and its hollow shaft is capped by an almost flattened roof, on which the weight of the body directly rest. It is obvious that, under these circumstances, the engineer would find it necessary to devise means for supporting this flat roof, and for distributing the vertical pressures which impinge upon it to the cylindrical walls of the shaft. {681}
In the case of the bird’s wing-bone, the hollow of the bone is practically empty, as we have already said, being filled only with air save for a thin layer of living tissue immediately within the cylinder of bone; but in our own bones, and all weight-carrying bones in general, the hollow space is filled with marrow, blood-vessels and other tissues; and among these living tissues lies a fine lattice-work of little interlaced “trabeculae” of bone, forming
Fig. 334. Head of the human femur in section. (After Schäfer, from a photo by Prof. A. Robinson.)
the so-called “cancellous tissue.” The older anatomists were content to describe this cancellous tissue as a sort of “spongy network,” or irregular honeycomb, until, some fifty years ago, a remarkable discovery was made regarding it. It was found by Hermann Meyer (and afterwards shewn in greater detail by Julius Wolff and others) that the trabeculae, as seen in a longitudinal section of a long bone, were arranged in a very definite and orderly way; in the femur, they spread in beautiful curving {682} lines from the head to the tubular shaft of the bone, and these bundles of lines were crossed by others, with so nice a regularity of arrangement that each intercrossing was as nearly as possible an orthogonal one: that is to say, the one set of fibres crossed the other everywhere at right angles. A great engineer, Professor Culmann of Zürich (to whom, by the way, we owe the whole modern method of “graphic statics”), happened to see some of Meyer’s drawings and preparations, and he recognised in a moment that in the arrangement of the trabeculae we had