6. The last and apparently the most wonderful performance of the German is shown in Fig. 58, where he appears to raise a cannon A placed upon a scale, the four ropes of the scale being fixed to a rope or chain attached to his girdle in the manner already described. Previous to the fixing of the ropes, the cannon and scale rest upon two rollers B, C; but when all is ready, the two rollers are knocked from beneath the scale, and the cannon is sustained by the strength of his loins.
Fig. 58.
The German also exhibited his strength in twisting into a screw a flat piece of iron like A, Fig. 59. He first bent the iron into a right angle as at B, and then wrapping his handkerchief about its broad upper end, he held that end in his left hand, and with his right applied to the other end, twisted about the angular point, as shown at C. Lord Tullibardine succeeded in doing the same thing, and even untwisted one of the irons which the German had twisted.
Fig. 59.
It would lead into details by no means popular were I to give a minute explanation of the mechanical principles upon which these feats depend. A few general observations will perhaps be sufficient for ordinary readers. The feats Nos. 1, 2, and 6, depend entirely on the natural strength of the bones of the pelvis, which form a double arch, which it would require an immense force to break, by any external pressure directed to the centre of the arch; and as the legs and thighs are capable of sustaining four or five thousand pounds when they stand quite upright, the performer has no difficulty in resisting the force of two horses, or of sustaining the weight of a cannon weighing two or three thousand pounds.
The feat of the anvil is certainly a very surprising one. The difficulty, however, really consists in sustaining the anvil, for when this is done, the effect of the hammering is nothing. If the anvil were a thin piece of iron, or even two or three times heavier than the hammer, the performer would be killed by a few blows; but the blows are scarcely felt when the anvil is very heavy, for the more matter the anvil has, the greater is its inertia, and it is the less liable to be struck out of its place; for when it has received by the blow the whole momentum of the hammer, its velocity will be so much less than that of the hammer, as its quantity of matter is greater. When the blow, indeed, is struck, the man feels less of the weight of the anvil than he did before, because in the reaction of the stone all the parts of it round about the hammer rise towards the blow. This property is illustrated by the well-known experiment of laying a stick with its ends upon two drinking-glasses full of water, and striking the stick downwards in the middle with an iron bar. The stick will in this case be broken without breaking the glasses or spilling the water. But if the stick is struck upwards, as if to throw it up in the air, the glasses will break if the blow be strong, and if the blow is not very quick, the water will be spilt without breaking the glasses.
When the performer supports a man upon his belly as in Fig. 55, he does it by means of the strong arch formed by his backbone, and the bones of his legs and thighs. If there were room for them, he could bear three or four, or, in their stead, a great stone to be broken with one blow.