The greater number of these cavities, whether large or small, contained two new fluids different from any hitherto known, and possessing remarkable physical properties. These two fluids are in general perfectly transparent and colourless, and they exist in the same cavity in actual contact, without mixing together in the slightest degree. One of them expands thirty times more than water, and at a temperature of about 80° of Fahrenheit it expands so as to fill up the vacuity in the cavity. This will be understood from the annexed figure, where A B C D is the cavity, m n p o the highly expansible fluid in which at low temperatures there is always a vacuity V, like an air-bubble in common fluids, and A m n, C o p, the second fluid occupying the angles A and C. When heat such as that of the hand is applied to the specimen, the vacuity V gradually contracts in size, and wholly vanishes at a temperature of about 80°, as shown in Fig. 81. The fluids are shaded, as in these two figures, when they are seen by light reflected from their surfaces.
Fig. 81.
Fig. 82.
When the cavities are large, as in Fig. 82, compared with the quantity of expansible fluid m n p o, the heat converts the fluid into vapour, an effect which is shown by the circular cavity V becoming larger and larger till it fills the whole space m n o p.
When any of these cavities, whether they are filled with fluid or with vapour, is allowed to cool, the vacuity V reappears at a certain temperature. In the fluid cavities the fluid contracts, and the small vacuity appears, which grows larger and larger till it resumes its original size. When the cavities are large, several small vacuities make their appearance and gradually unite into one, though they sometimes remain separate. In deep cavities a very remarkable phenomenon accompanies the reappearance of the vacuity. At the instant that the fluid has acquired the temperature at which it quits the sides of the cavity, an effervescence or rapid ebullition takes place, and the transparent cavity is for a moment opaque, with an infinite number of minute vacuities, which instantly unite into one that goes on enlarging as the temperature diminishes. In the vapour cavities the vapour is reconverted by the cold into fluid, and the vacuity V, Fig. 82, gradually contracts till all the vapour has been precipitated. It is curious to observe, when a great number of cavities are seen at once in the field of the microscope, that the vacuities all disappear and reappear at the same instant.
While all these changes are going on in the expansive fluid, the other denser fluid at A and C, Fig. 80, 81, remains unchanged either in its form or magnitude. On this account I experienced considerable difficulty in proving that it was a fluid. The improbability of two fluids existing in a transparent state in absolute contact, without mixing in the slightest degree, or acting upon each other, induced many persons to whom I showed the phenomenon to consider the lines m n, o p, Fig. 80, 81, as a partition in the cavity, or the spaces A m n, o p C, either as filled with solid matter, or as corners into which the expanding fluid would not penetrate. The regular curvature, however, of the boundary line m n, o p, and other facts, rendered these suppositions untenable.
Fig. 83.