The little telescopes, MN, OP, may be made one and a half or even one inch long, and fitted up, either at a fixed or with a variable inclination, in a pyramidal box, like the lenticular stereoscope, and made equally portable. One of these instruments was made for me some years ago by Messrs. Horne and Thornthwaite, and I have described it in the North British Review[42] as having the properties of a Binocular Cameoscope, and of what has been absurdly called a Pseudoscope, seeing that every inverting eye-piece and every stereoscope is entitled to the very same name.
The little telescope may be made of one piece of glass, convex at each end, or concave at the eye-end if a small field is not objectionable,—the length of the piece of glass, in the first case, being equal to the sum, and, in the second case, to the difference of the focal lengths of the virtual lenses at each end.[43]
7. The Eye-Glass Stereoscope.
As it is impossible to obtain, by the ocular stereoscope, pictures in relief from the beautiful binocular slides which are made in every part of the world for the lenticular stereoscope, it is very desirable to have a portable stereoscope which can be carried safely in our purse, for the purpose of examining stereoscopically all such binocular pictures.
If placed together with their plane sides in contact, a plano-convex lens, AB, and a plano-concave one, CD, of the same glass and the same focal length, will resemble a thick watch-glass, and on looking through them, we shall see objects of their natural size and in their proper place; but if we slip the concave lens, CD, to a side, as shewn in [Fig. 41], we merely displace the image of the object which we view, and the displacement increases till the centre of the concave lens comes to the margin of the convex one. We thus obtain a variable prism, by means of which we can, with the left eye, displace one of the binocular pictures, and lay it upon the other, as seen by the right eye. We may use semi-lenses or quarters of lenses, and we may make them achromatic or nearly so if we desire it. Double convex and double concave lenses may also be used, and the motion of the concave one regulated by a screw. In one which I constantly use, the concave lens slides in a groove over a convex quarter-lens.
Fig. 41.
By employing two of these variable prisms, we have an Universal Stereoscope for uniting pictures of various sizes and at various distances from each other, and the prisms may be placed in a pyramidal box, like the lenticular stereoscope.
8. The Reading-Glass Stereoscope.
If we take a reading-glass whose diameter is not less than two inches and three quarters, and look through it with both eyes at a binocular picture in which the right-eye view is on the left hand, and the left-eye view on the right hand, as in the ocular stereoscope, we shall see each picture doubled, and the degree of separation is proportional to the distance of the picture from the eye. If the distance of the binocular pictures from each other is small, the two middle images of the four will be united when their distance from the lens is not very much greater than its focal length. With a reading-glass 4½ inches in diameter, with a focal length of two feet, binocular pictures, in which the distance of similar parts is nine inches, are united without any exertion of the eyes at the distance of eight feet. With the same reading-glass, binocular pictures, at the usual distance of 2½ inches, will be united at the distance of 2¼ or even 2½ feet. If we advance the reading-glass when the distance is 2 or 3 feet, the picture in relief will be magnified, but, though the observer may not notice it, the separated images are now kept united by a slight convergency of the optic axes. Although the pictures are placed so far beyond the anterior focus of the lens, they are exceedingly distinct. The distinctness of vision is sufficient, at least to long-sighted eyes, when the pictures are placed within 16 or 18 inches of the observer, that is, 6 or 8 inches nearer the eye than the anterior focus of the lens. In this case we can maintain the union of the pictures only when we begin to view them at a distance of 2½ or 3 feet, and then gradually advance the lens within 16 or 18 inches of the pictures. At considerable distances, the pictures are most magnified by advancing the lens while the head of the observer is stationary.