angle-sum of a triangle for special cases, and the angle inscribed in a semicircle.[18]
The greatest pupil of Thales, and one of the most remarkable men of antiquity, was Pythagoras. Born probably on the island of Samos, just off the coast of Asia Minor, about the year 580 B.C., Pythagoras set forth as a young man to travel. He went to Miletus and studied under Thales, probably spent several years in Egypt, very likely went to Babylon, and possibly went even to India, since tradition asserts this and the nature of his work in mathematics suggests it. In later life he went to a Greek colony in southern Italy, and at Crotona, in the southeastern part of the peninsula, he founded a school and established a secret society to propagate his doctrines. In geometry he is said to have been the first to demonstrate the proposition that the square on the hypotenuse is equal to the sum of the squares upon the other two sides of a right triangle. The proposition was known in India and Egypt before his time, at any rate for special cases, but he seems to have been the first to prove it. To him or to his school seems also to have been due the construction of the regular pentagon and of the five regular polyhedrons. The construction of the regular pentagon requires the dividing of a line into extreme and mean ratio, and this problem is commonly assigned to the Pythagoreans, although it played an important part in Plato's school. Pythagoras is also said to have known that six equilateral triangles, three regular hexagons, or four squares, can be placed about a point so as just to fill the 360°, but that no other regular polygons can be so placed. To his school is also due the proof for the general case that the sum of the angles of a triangle equals two right angles, the first knowledge of the size of each angle of a regular polygon, and the construction of at least one star-polygon, the star-pentagon, which became the badge of his fraternity. The brotherhood founded by Pythagoras proved so offensive to the government that it was dispersed before the death of the master. Pythagoras fled to [Megapontum], a seaport lying to the north of Crotona, and there he died about 501 B.C.[19]
For two centuries after Pythagoras geometry passed through a period of discovery of propositions. The state of the science may be seen from the fact that Œnopides of Chios, who flourished about 465 B.C., and who had studied in Egypt, was celebrated because he showed how to let fall a perpendicular to a line, and how to make an angle equal to a given angle. A few years later, about 440 B.C., Hippocrates of Chios wrote the first Greek textbook on mathematics. He knew that the areas of circles are proportional to the squares on their radii, but was ignorant of the fact that equal central angles or equal inscribed angles intercept equal arcs.
Antiphon and Bryson, two Greek scholars, flourished about 430 B.C. The former attempted to find the area of a circle by doubling the number of sides of a regular inscribed polygon, and the latter by doing the same for both inscribed and circumscribed polygons. They thus approximately exhausted the area between the polygon and the circle, and hence this method is known as the method of exhaustions.
About 420 B.C. Hippias of Elis invented a certain curve called the quadratrix, by means of which he could square the circle and trisect any angle. This curve cannot be constructed by the unmarked straightedge and the compasses, and when we say that it is impossible to square the circle or to trisect any angle, we mean that it is impossible by the help of these two instruments alone.
During this period the great philosophic school of Plato (429-348 B.C.) flourished at Athens, and to this school is due the first systematic attempt to create exact definitions, axioms, and postulates, and to distinguish between elementary and higher geometry. It was at this time that elementary geometry became limited to the use of the compasses and the unmarked straightedge, which took from this domain the possibility of constructing a square equivalent to a given circle ("squaring the circle"), of trisecting any given angle, and of constructing a cube that should have twice the volume of a given cube ("duplicating the cube"), these being the three famous problems of antiquity. Plato and his school interested themselves with the so-called Pythagorean numbers, that is, with numbers that would represent the three sides of a right triangle and hence fulfill the condition that a2 + b2 = c2. Pythagoras had already given a rule that would be expressed in modern form, as ¼(m2 + 1)2 = m2 + ¼(m2 - 1)2. The school of Plato found that ((½m)2 + 1)2 = m2 + ((½m)2 - 1)2. By giving various values to m, different Pythagorean numbers may be found. Plato's nephew, Speusippus (about 350 B.C.), wrote upon this subject. Such numbers were known, however, both in India and in Egypt, long before this time.
One of Plato's pupils was Philippus of Mende, in Egypt, who flourished about 380 B.C. It is said that he discovered the proposition relating to the exterior angle of a triangle. His interest, however, was chiefly in astronomy.
Another of Plato's pupils was Eudoxus of Cnidus (408-355 B.C.). He elaborated the theory of proportion, placing it upon a thoroughly scientific foundation. It is probable that Book V of Euclid, which is devoted to proportion, is essentially the work of Eudoxus. By means of the method of exhaustions of Antiphon and Bryson he proved that the pyramid is one third of a prism, and the cone is one third of a cylinder, each of the same base and the same altitude. He wrote the first textbook known on solid geometry.